IDEAS home Printed from https://ideas.repec.org/p/aoz/wpaper/11.html
   My bibliography  Save this paper

Portfolio Selection in Quantile Decision Models

Author

Listed:
  • Luciano De Castro

    (University of Iowa)

  • Antonio F. Galvao

    (University of Arizona)

  • Gabriel Montes Rojas

    (CONICET. Instituto Interdisciplinario de Economía Política, Universidad de Buenos Aires)

  • José Olmo

    (Universidad de Zaragoza. University of Southampton. University Rd., Southampton)

Abstract

This paper develops an optimal portfolio allocation model for an investor with quantile preferences, i.e., who maximizes the t-quantile of the portfolio return. Quantile preferences allow to study heterogeneity in individuals’ portfolio choice and have a solid axiomatic foundation. We derive conditions under which the optimal portfolio allocation problem has an interior solution guaranteeing diversification and conditions under which the portfolio allocation is characterized by two regions: full diversification for quantiles below the median and no diversification for upper quantiles. These results are illustrated via simulation and empirically with a portfolio of cash, a stock index and a bond index.

Suggested Citation

  • Luciano De Castro & Antonio F. Galvao & Gabriel Montes Rojas & José Olmo, 2020. "Portfolio Selection in Quantile Decision Models," Working Papers 11, Red Nacional de Investigadores en Economía (RedNIE).
  • Handle: RePEc:aoz:wpaper:11
    as

    Download full text from publisher

    File URL: https://drive.google.com/file/d/1f0ZkG32wpR-gCPDgzzriPpNAi8oBVEyj/view
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2551-2569, August.
    2. Mendelson, Haim, 1987. "Quantile-preserving spread," Journal of Economic Theory, Elsevier, vol. 42(2), pages 334-351, August.
    3. Chambers, Christopher P., 2007. "Ordinal aggregation and quantiles," Journal of Economic Theory, Elsevier, vol. 137(1), pages 416-431, November.
    4. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    5. Manski, Charles F., 1986. "Ordinal Utility Models Of Decision Making Under Uncertainty," SSRI Workshop Series 292682, University of Wisconsin-Madison, Social Systems Research Institute.
    6. Giovannetti, Bruno C., 2013. "Asset pricing under quantile utility maximization," Review of Financial Economics, Elsevier, vol. 22(4), pages 169-179.
    7. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    8. Gilbert W. Bassett, 2004. "Pessimistic Portfolio Allocation and Choquet Expected Utility," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 477-492.
    9. David E. Bell, 1982. "Regret in Decision Making under Uncertainty," Operations Research, INFORMS, vol. 30(5), pages 961-981, October.
    10. Matthew Rabin, 2000. "Risk Aversion and Expected-Utility Theory: A Calibration Theorem," Econometrica, Econometric Society, vol. 68(5), pages 1281-1292, September.
    11. Campbell, Rachel & Huisman, Ronald & Koedijk, Kees, 2001. "Optimal portfolio selection in a Value-at-Risk framework," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1789-1804, September.
    12. Todd Mitton & Keith Vorkink, 2007. "Equilibrium Underdiversification and the Preference for Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1255-1288.
    13. Simon, Herbert A, 1979. "Rational Decision Making in Business Organizations," American Economic Review, American Economic Association, vol. 69(4), pages 493-513, September.
    14. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    15. David B. Brown & Melvyn Sim, 2009. "Satisficing Measures for Analysis of Risky Positions," Management Science, INFORMS, vol. 55(1), pages 71-84, January.
    16. Ghirardato, Paolo & Marinacci, Massimo, 2002. "Ambiguity Made Precise: A Comparative Foundation," Journal of Economic Theory, Elsevier, vol. 102(2), pages 251-289, February.
    17. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    18. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    19. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    20. Ghirardato, Paolo & Maccheroni, Fabio & Marinacci, Massimo, 2005. "Certainty Independence and the Separation of Utility and Beliefs," Journal of Economic Theory, Elsevier, vol. 120(1), pages 129-136, January.
    21. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    22. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    23. de Castro, Luciano & Galvao, Antonio F. & Noussair, Charles N. & Qiao, Liang, 2022. "Do people maximize quantiles?," Games and Economic Behavior, Elsevier, vol. 132(C), pages 22-40.
    24. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    25. Porter, R Burr, 1974. "Semivariance and Stochastic Dominance: A Comparison," American Economic Review, American Economic Association, vol. 64(1), pages 200-204, March.
    26. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    27. Marzena Rostek, 2010. "Quantile Maximization in Decision Theory ," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(1), pages 339-371.
    28. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    29. Christopher P. Chambers, 2009. "An Axiomatization Of Quantiles On The Domain Of Distribution Functions," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 335-342, April.
    30. Bhattacharya, Debopam, 2009. "Inferring Optimal Peer Assignment From Experimental Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 486-500.
    31. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    32. Luciano de Castro & Antonio F. Galvao, 2019. "Dynamic Quantile Models of Rational Behavior," Econometrica, Econometric Society, vol. 87(6), pages 1893-1939, November.
    33. Baltussen, Guido & Post, Gerrit T., 2011. "Irrational Diversification: An Examination of Individual Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(5), pages 1463-1491, October.
    34. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    35. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balter, Anne G. & Chau, Ki Wai & Schweizer, Nikolaus, 2024. "Comparative risk aversion vs. threshold choice in the Omega ratio," Omega, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castro, Luciano de & Galvao, Antonio F. & Kim, Jeong Yeol & Montes-Rojas, Gabriel & Olmo, Jose, 2022. "Experiments on portfolio selection: A comparison between quantile preferences and expected utility decision models," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 97(C).
    2. de Castro, Luciano & Galvao, Antonio F. & Noussair, Charles N. & Qiao, Liang, 2022. "Do people maximize quantiles?," Games and Economic Behavior, Elsevier, vol. 132(C), pages 22-40.
    3. Luciano Castro & Antonio F. Galvao, 2022. "Static and dynamic quantile preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 747-779, April.
    4. Xue Dong He & Zhaoli Jiang & Steven Kou, 2020. "Portfolio Selection under Median and Quantile Maximization," Papers 2008.10257, arXiv.org, revised Mar 2021.
    5. de Castro, Luciano & Galvao, Antonio F. & Muchon, Andre, 2023. "Numerical Solution of Dynamic Quantile Models," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    6. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    7. Weidong Lin & Jose Olmo & Abderrahim Taamouti, 2022. "Portfolio Selection Under Systemic Risk," Working Papers 202208, University of Liverpool, Department of Economics.
    8. Christis Katsouris, 2021. "Optimal Portfolio Choice and Stock Centrality for Tail Risk Events," Papers 2112.12031, arXiv.org.
    9. Enrico G. De Giorgi & Ola Mahmoud, 2016. "Diversification preferences in the theory of choice," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(2), pages 143-174, November.
    10. Baruník, Jozef & Čech, František, 2021. "Measurement of common risks in tails: A panel quantile regression model for financial returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    11. Ulrich Schmidt & Horst Zank, 2022. "Chance theory: A separation of riskless and risky utility," Journal of Risk and Uncertainty, Springer, vol. 65(1), pages 1-32, August.
    12. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
    13. Izhakian, Yehuda, 2020. "A theoretical foundation of ambiguity measurement," Journal of Economic Theory, Elsevier, vol. 187(C).
    14. Jiang, Yifu & Olmo, Jose & Atwi, Majed, 2024. "Dynamic robust portfolio selection under market distress," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    15. Hirbod Assa & Peng Liu, 2024. "Factor risk measures," Papers 2404.08475, arXiv.org.
    16. Izhakian, Yehuda, 2017. "Expected utility with uncertain probabilities theory," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 91-103.
    17. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    18. Balter, Anne G. & Chau, Ki Wai & Schweizer, Nikolaus, 2024. "Comparative risk aversion vs. threshold choice in the Omega ratio," Omega, Elsevier, vol. 123(C).
    19. Phillips Peter J. & Pohl Gabriela, 2018. "The Deferral of Attacks: SP/A Theory as a Model of Terrorist Choice when Losses Are Inevitable," Open Economics, De Gruyter, vol. 1(1), pages 71-85, February.
    20. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..

    More about this item

    Keywords

    Optimal Asset Allocation Quantile Preferences Portfolio Theory Risk Attitude;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aoz:wpaper:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Inés D Amato (email available below). General contact details of provider: https://edirc.repec.org/data/redniar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.