IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v148y2023ics0165188923000234.html
   My bibliography  Save this article

Numerical Solution of Dynamic Quantile Models

Author

Listed:
  • de Castro, Luciano
  • Galvao, Antonio F.
  • Muchon, Andre

Abstract

This paper studies dynamic programming for quantile preference models, in which the agent maximizes the stream of the future τ-quantile utilities, for τ∈(0,1). We suggest numerical methods, based on value function iterations, for solving the quantile recursive dynamic programming, and computing value and policy functions. In addition, we extend theoretical results to allow the dynamic quantile model to have a finite-horizon, instead of infinite-horizon. To illustrate the methods, we use an intertemporal consumption quantile model that has an explicit closed form solution for both the value and policy functions. Based on this example, we assess the accuracy of the numerical methods by computing and comparing theoretical and numerical value and policy functions, for several combinations of the parameters – discount factor, elasticity of intertemporal substitution, and risk attitude, which is measured by the quantile. Results document evidence that the suggested algorithm provides numerical solutions that are very close to theoretical counterparts, and also illustrate the usefulness and practicality of the proposed methods.

Suggested Citation

  • de Castro, Luciano & Galvao, Antonio F. & Muchon, Andre, 2023. "Numerical Solution of Dynamic Quantile Models," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:dyncon:v:148:y:2023:i:c:s0165188923000234
    DOI: 10.1016/j.jedc.2023.104617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188923000234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2023.104617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Binsbergen, Jules H. & Fernández-Villaverde, Jesús & Koijen, Ralph S.J. & Rubio-Ramírez, Juan, 2012. "The term structure of interest rates in a DSGE model with recursive preferences," Journal of Monetary Economics, Elsevier, vol. 59(7), pages 634-648.
    2. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    3. Hall, Robert E, 1978. "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 971-987, December.
    4. Manski, Charles F., 1986. "Ordinal Utility Models Of Decision Making Under Uncertainty," SSRI Workshop Series 292682, University of Wisconsin-Madison, Social Systems Research Institute.
    5. Kollmann, Robert & Maliar, Serguei & Malin, Benjamin A. & Pichler, Paul, 2011. "Comparison of solutions to the multi-country Real Business Cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 186-202, February.
    6. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    7. Bruno C. Giovannetti, 2013. "Asset pricing under quantile utility maximization," Review of Financial Economics, John Wiley & Sons, vol. 22(4), pages 169-179, November.
    8. Long, Yan & Sethuraman, Jay & Xue, Jingyi, 2021. "Equal-quantile rules in resource allocation with uncertain needs," Journal of Economic Theory, Elsevier, vol. 197(C).
    9. Jerome Adda & Russell W. Cooper, 2003. "Dynamic Economics: Quantitative Methods and Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012014, December.
    10. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    11. Christopher P. Chambers, 2009. "An Axiomatization Of Quantiles On The Domain Of Distribution Functions," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 335-342, April.
    12. Bhattacharya, Debopam, 2009. "Inferring Optimal Peer Assignment From Experimental Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 486-500.
    13. Luciano de Castro & Antonio F. Galvao, 2019. "Dynamic Quantile Models of Rational Behavior," Econometrica, Econometric Society, vol. 87(6), pages 1893-1939, November.
    14. Gaspar, Jess & L. Judd, Kenneth, 1997. "Solving Large-Scale Rational-Expectations Models," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 45-75, January.
    15. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    16. Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Inna Tsener, 2017. "How to solve dynamic stochastic models computing expectations just once," Quantitative Economics, Econometric Society, vol. 8(3), pages 851-893, November.
    17. Mendelson, Haim, 1987. "Quantile-preserving spread," Journal of Economic Theory, Elsevier, vol. 42(2), pages 334-351, August.
    18. Chambers, Christopher P., 2007. "Ordinal aggregation and quantiles," Journal of Economic Theory, Elsevier, vol. 137(1), pages 416-431, November.
    19. Hall, Robert E, 1988. "Intertemporal Substitution in Consumption," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 339-357, April.
    20. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    21. Baruník, Jozef & Čech, František, 2021. "Measurement of common risks in tails: A panel quantile regression model for financial returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    22. Antoine Bommier & Asen Kochov & François Le Grand, 2017. "On Monotone Recursive Preferences," Econometrica, Econometric Society, vol. 85, pages 1433-1466, September.
    23. Ljungqvist, Lars & Sargent, Thomas J., 2012. "Recursive Macroeconomic Theory, Third Edition," MIT Press Books, The MIT Press, edition 3, volume 1, number 0262018748, December.
    24. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729, Elsevier.
    25. Den Haan, Wouter J., 2010. "Comparison of solutions to the incomplete markets model with aggregate uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 4-27, January.
    26. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
    27. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    28. Taylor, John B & Uhlig, Harald, 1990. "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 1-17, January.
    29. Epstein, Larry G & Zin, Stanley E, 1991. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: An Empirical Analysis," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 263-286, April.
    30. de Castro, Luciano & Galvao, Antonio F. & Noussair, Charles N. & Qiao, Liang, 2022. "Do people maximize quantiles?," Games and Economic Behavior, Elsevier, vol. 132(C), pages 22-40.
    31. Xue Dong He & Zhaoli Jiang & Steven Kou, 2020. "Portfolio Selection under Median and Quantile Maximization," Papers 2008.10257, arXiv.org, revised Mar 2021.
    32. Santos, Manuel S., 1999. "Numerical solution of dynamic economic models," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 5, pages 311-386, Elsevier.
    33. Luciano Castro & Antonio F. Galvao, 2022. "Static and dynamic quantile preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 747-779, April.
    34. Marinacci, Massimo & Montrucchio, Luigi, 2010. "Unique solutions for stochastic recursive utilities," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1776-1804, September.
    35. Marzena Rostek, 2010. "Quantile Maximization in Decision Theory ," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(1), pages 339-371.
    36. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    2. de Castro, Luciano I. & Galvao, Antonio F. & Nunes, Daniel da Siva, 0. "Dynamic economics with quantile preferences," Theoretical Economics, Econometric Society.
    3. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    4. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    5. de Castro, Luciano & Cundy, Lance D. & Galvao, Antonio F. & Westenberger, Rafael, 2023. "A dynamic quantile model for distinguishing intertemporal substitution from risk aversion," European Economic Review, Elsevier, vol. 159(C).
    6. Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Inna Tsener, 2017. "How to solve dynamic stochastic models computing expectations just once," Quantitative Economics, Econometric Society, vol. 8(3), pages 851-893, November.
    7. Luciano Castro & Antonio F. Galvao, 2022. "Static and dynamic quantile preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 747-779, April.
    8. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    9. Luciano de Castro & Antonio F. Galvao & Gabriel Montes-Rojas & Jose Olmo, 2022. "Portfolio selection in quantile decision models," Annals of Finance, Springer, vol. 18(2), pages 133-181, June.
    10. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2010. "A Cluster-Grid Projection Method: Solving Problems with High Dimensionality," NBER Working Papers 15965, National Bureau of Economic Research, Inc.
    11. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    12. Yongyang Cai & Kenneth Judd & Jevgenijs Steinbuks, 2017. "A nonlinear certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 8(1), pages 117-147, March.
    13. Thomas J. Sargent & John Stachurski, 2024. "Dynamic Programming: Finite States," Papers 2401.10473, arXiv.org.
    14. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    15. de Castro, Luciano & Galvao, Antonio F. & Noussair, Charles N. & Qiao, Liang, 2022. "Do people maximize quantiles?," Games and Economic Behavior, Elsevier, vol. 132(C), pages 22-40.
    16. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    17. Castro, Luciano de & Galvao, Antonio F. & Kim, Jeong Yeol & Montes-Rojas, Gabriel & Olmo, Jose, 2022. "Experiments on portfolio selection: A comparison between quantile preferences and expected utility decision models," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 97(C).
    18. Heer Burkhard & Maußner Alfred, 2011. "Value Function Iteration as a Solution Method for the Ramsey Model," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(4), pages 494-515, August.
    19. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, December.
    20. Hull, Isaiah, 2015. "Approximate dynamic programming with post-decision states as a solution method for dynamic economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 57-70.

    More about this item

    Keywords

    Quantile preferences; Dynamic programming; Value function iterations;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:148:y:2023:i:c:s0165188923000234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.