IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v19y2012i2p254-265.html
   My bibliography  Save this article

Stock return autocorrelations revisited: A quantile regression approach

Author

Listed:
  • Baur, Dirk G.
  • Dimpfl, Thomas
  • Jung, Robert C.

Abstract

The aim of this study is to provide a comprehensive description of the dependence pattern of stock returns by studying a range of quantiles of the conditional return distribution using quantile autoregression. This enables us to study the behavior of extreme quantiles associated with large positive and negative returns in contrast to the central quantile which is closely related to the conditional mean in the least-squares regression framework. Our empirical results are based on 30years of daily, weekly and monthly returns of the stocks comprised in the Dow Jones Stoxx 600 index. We find that lower quantiles exhibit positive dependence on past returns while upper quantiles are marked by negative dependence. This pattern holds when accounting for stock specific characteristics such as market capitalization, industry, or exposure to market risk.

Suggested Citation

  • Baur, Dirk G. & Dimpfl, Thomas & Jung, Robert C., 2012. "Stock return autocorrelations revisited: A quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 254-265.
  • Handle: RePEc:eee:empfin:v:19:y:2012:i:2:p:254-265
    DOI: 10.1016/j.jempfin.2011.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539811000971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2011.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    2. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    3. Lingjie Ma & Larry Pohlman, 2008. "Return forecasts and optimal portfolio construction: a quantile regression approach," The European Journal of Finance, Taylor & Francis Journals, vol. 14(5), pages 409-425.
    4. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    5. Lo, Andrew W. & Craig MacKinlay, A., 1990. "An econometric analysis of nonsynchronous trading," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
    6. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
    7. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    8. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    9. Veronesi, Pietro, 1999. "Stock Market Overreaction to Bad News in Good Times: A Rational Expectations Equilibrium Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 975-1007.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Campbell, Rachel A.J. & Forbes, Catherine S. & Koedijk, Kees G. & Kofman, Paul, 2008. "Increasing correlations or just fat tails?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 287-309, March.
    12. Jonathan Lewellen, 2002. "Momentum and Autocorrelation in Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(2), pages 533-564, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geoffrey M. Ngene & Catherine Anitha Manohar & Ivan F. Julio, 2020. "Overreaction in the REITs Market: New Evidence from Quantile Autoregression Approach," JRFM, MDPI, vol. 13(11), pages 1-28, November.
    2. Wen-Jun Xue & Li-Wen Zhang, 2016. "Stock Return Autocorrelations and Predictability in the Chinese Stock Market: Evidence from Threshold Quantile Autoregressive Models," Working Papers 1605, Florida International University, Department of Economics.
    3. Xue, Wen-Jun & Zhang, Li-Wen, 2017. "Stock return autocorrelations and predictability in the Chinese stock market—Evidence from threshold quantile autoregressive models," Economic Modelling, Elsevier, vol. 60(C), pages 391-401.
    4. Swamy, Vighneswara & Dharani, M. & Takeda, Fumiko, 2019. "Investor attention and Google Search Volume Index: Evidence from an emerging market using quantile regression analysis," Research in International Business and Finance, Elsevier, vol. 50(C), pages 1-17.
    5. Lili Li & Shan Leng & Jun Yang & Mei Yu, 2016. "Stock Market Autoregressive Dynamics: A Multinational Comparative Study with Quantile Regression," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-15, September.
    6. Abhinava Tripathi, 2021. "The Arrival of Information and Price Adjustment Across Extreme Quantiles: Global Evidence," IIM Kozhikode Society & Management Review, , vol. 10(1), pages 7-19, January.
    7. Zhao, Yixiu & Upreti, Vineet & Cai, Yuzhi, 2021. "Stock returns, quantile autocorrelation, and volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 73(C).
    8. Gębka, Bartosz & Wohar, Mark E., 2013. "The determinants of quantile autocorrelations: Evidence from the UK," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 51-61.
    9. Dirk G Baur & Thomas Dimpfl, 2012. "State-dependent Momentum in International Stock Markets," Working Paper Series 169, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    10. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    11. Pawan Jain & Wen-Jun Xue, 2017. "Global Investigation of Return Autocorrelation and its Determinants," Working Papers 1704, Florida International University, Department of Economics.
    12. Robert Maderitsch, 2015. "Spillovers from the USA to stock markets in Asia: a quantile regression approach," Applied Economics, Taylor & Francis Journals, vol. 47(44), pages 4714-4727, September.
    13. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    14. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    15. Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
    16. Jain, Pawan & Xue, Wenjun, 2017. "Global investigation of return autocorrelation and its determinants," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 200-217.
    17. Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
    18. Hongtao Guo & Miranda S. Lam & Guojun Wu & Zhijie Xiao, 2013. "Risk Analysis Using Regression Quantiles: Evidence from International Equity Markets," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 7(2), pages 1-15.
    19. Guo, Peng & Zhu, Huiming & You, Wanhai, 2018. "Asymmetric dependence between economic policy uncertainty and stock market returns in G7 and BRIC: A quantile regression approach," Finance Research Letters, Elsevier, vol. 25(C), pages 251-258.
    20. Ni, Zhong-Xin & Wang, Da-Zhong & Xue, Wen-Jun, 2015. "Investor sentiment and its nonlinear effect on stock returns—New evidence from the Chinese stock market based on panel quantile regression model," Economic Modelling, Elsevier, vol. 50(C), pages 266-274.

    More about this item

    Keywords

    Stock return distribution; Quantile autoregression; Overreaction and underreaction;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:19:y:2012:i:2:p:254-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.