IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp911-924.html
   My bibliography  Save this article

Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material

Author

Listed:
  • Naghavi, M.S.
  • Ong, K.S.
  • Badruddin, I.A.
  • Mehrali, M.
  • Silakhori, M.
  • Metselaar, H.S.C.

Abstract

The purpose of this paper is to model theoretically a solar hot water system consisting of an array of ETHPSC (evacuated tube heat pipe solar collectors) connected to a common manifold filled with phase change material and acting as a LHTES (latent heat thermal energy storage) tank. Solar energy incident on the ETHPSC is collected and stored in the LHTES tank. The stored heat is then transferred to the domestic hot water supply via a finned heat exchanger pipe placed inside the tank. A combination of mathematical algorithms is used to model a complete process of the heat absorption, storage and release modes of the proposed system. The results show that for a large range of flow rates, the thermal performance of the ETHPSC-LHTES system is higher than that of a similar system without latent heat storage. Furthermore, the analysis shows that the efficiency of the introduced system is less sensitive to the draw off water flowrate than a conventional system. Analysis indicates that this system could be applicable as a complementary part to conventional ETHPSC systems to be able to produce hot water at night time or at times with weak radiation.

Suggested Citation

  • Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, M. & Silakhori, M. & Metselaar, H.S.C., 2015. "Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material," Energy, Elsevier, vol. 91(C), pages 911-924.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:911-924
    DOI: 10.1016/j.energy.2015.08.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Yong & Seo, Taebeom, 2007. "Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube," Renewable Energy, Elsevier, vol. 32(5), pages 772-795.
    2. Koca, Ahmet & Oztop, Hakan F. & Koyun, Tansel & Varol, Yasin, 2008. "Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector," Renewable Energy, Elsevier, vol. 33(4), pages 567-574.
    3. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Improving the energy storage capability of hot water tanks through wall material specification," Energy, Elsevier, vol. 78(C), pages 128-140.
    4. Mazman, Muhsin & Cabeza, Luisa F. & Mehling, Harald & Nogues, Miquel & Evliya, Hunay & Paksoy, Halime Ö., 2009. "Utilization of phase change materials in solar domestic hot water systems," Renewable Energy, Elsevier, vol. 34(6), pages 1639-1643.
    5. Lamberg, Piia, 2004. "Approximate analytical model for two-phase solidification problem in a finned phase-change material storage," Applied Energy, Elsevier, vol. 77(2), pages 131-152, February.
    6. Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.
    7. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Domestic hot water storage: Balancing thermal and sanitary performance," Energy Policy, Elsevier, vol. 68(C), pages 334-339.
    8. Nallusamy, N. & Sampath, S. & Velraj, R., 2007. "Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources," Renewable Energy, Elsevier, vol. 32(7), pages 1206-1227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    2. Alireza Esmaeilzadeh & Mahyar Silakhori & Nik Nazri Nik Ghazali & Hendrik Simon Cornelis Metselaar & Azuddin Bin Mamat & Mohammad Sajad Naghavi Sanjani & Soudeh Iranmanesh, 2020. "Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe," Energies, MDPI, vol. 13(24), pages 1-21, December.
    3. Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, Mohammad & Metselaar, H.S.C., 2017. "Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes," Energy, Elsevier, vol. 127(C), pages 101-115.
    4. Sana Said & Sofiene Mellouli & Talal Alqahtani & Salem Algarni & Ridha Ajjel & Kaouther Ghachem & Lioua Kolsi, 2023. "An Experimental Comparison of the Performance of Various Evacuated Tube Solar Collector Designs," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    5. Nishant Modi & Xiaolin Wang & Michael Negnevitsky, 2023. "Solar Hot Water Systems Using Latent Heat Thermal Energy Storage: Perspectives and Challenges," Energies, MDPI, vol. 16(4), pages 1-20, February.
    6. Arun Uniyal & Yogesh K. Prajapati & Lalit Ranakoti & Prabhakar Bhandari & Tej Singh & Brijesh Gangil & Shubham Sharma & Viyat Varun Upadhyay & Sayed M. Eldin, 2022. "Recent Advancements in Evacuated Tube Solar Water Heaters: A Critical Review of the Integration of Phase Change Materials and Nanofluids with ETCs," Energies, MDPI, vol. 15(23), pages 1-25, November.
    7. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Alshukri, Mohammed J. & Eidan, Adel A. & Najim, Saleh Ismail, 2021. "Thermal performance of heat pipe evacuated tube solar collector integrated with different types of phase change materials at various location," Renewable Energy, Elsevier, vol. 171(C), pages 635-646.
    9. Li, Qiyuan & Tehrani, S. Saeed Mostafavi & Taylor, Robert A., 2017. "Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage," Energy, Elsevier, vol. 121(C), pages 220-237.
    10. Essa, Mohamed A. & Rofaiel, Ibrahim Y. & Ahmed, Mohamed A., 2020. "Experimental and Theoretical Analysis for the Performance of Evacuated Tube Collector Integrated with Helical Finned Heat Pipes using PCM Energy Storage," Energy, Elsevier, vol. 206(C).
    11. Wan Afin Fadzlin & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Zafar Said, 2022. "Global Challenges of Current Building-Integrated Solar Water Heating Technologies and Its Prospects: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-42, July.
    12. Mohammad Sajad Naghavi Sanjani & Mahyar Silakhori & Bee Chin Ang & Hendrik Simon Cornelis Metselaar & Sayed Mohammad Mousavi Gazafroudi & Younes Noorollahi, 2023. "Experimental Investigation on Solar Water Heater Integrated with Thermal Battery Using Phase Change Material and Porous Media," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    13. Mathew, Adarsh Abi & Thangavel, Venugopal, 2021. "A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 1674-1693.
    14. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    16. Motte, F. & Notton, G. & Lamnatou, Chr & Cristofari, C. & Chemisana, D., 2019. "Numerical study of PCM integration impact on overall performances of a highly building-integrated solar collector," Renewable Energy, Elsevier, vol. 137(C), pages 10-19.
    17. Nokhosteen, Arman & Sobhansarbandi, Sarvenaz, 2021. "Numerical modeling and experimental cross-validation of a solar thermal collector through an innovative hybrid CFD model," Renewable Energy, Elsevier, vol. 172(C), pages 918-928.
    18. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    19. Bazri, Shahab & Badruddin, Irfan Anjum & Naghavi, Mohammad Sajad & Bahiraei, Mehdi, 2018. "A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles," Renewable Energy, Elsevier, vol. 118(C), pages 761-778.
    20. Pantaleo, Antonio M. & Fordham, Julia & Oyewunmi, Oyeniyi A. & De Palma, Pietro & Markides, Christos N., 2018. "Integrating cogeneration and intermittent waste-heat recovery in food processing: Microturbines vs. ORC systems in the coffee roasting industry," Applied Energy, Elsevier, vol. 225(C), pages 782-796.
    21. Abokersh, Mohamed Hany & El-Morsi, Mohamed & Sharaf, Osama & Abdelrahman, Wael, 2017. "An experimental evaluation of direct flow evacuated tube solar collector integrated with phase change material," Energy, Elsevier, vol. 139(C), pages 1111-1125.
    22. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2020. "Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays," Applied Energy, Elsevier, vol. 261(C).
    23. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, Mohammad & Metselaar, H.S.C., 2017. "Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes," Energy, Elsevier, vol. 127(C), pages 101-115.
    2. Naghavi, M.S. & Metselaar, H.S.C. & Ang, B.C. & Zamiri, G. & Esmailzadeh, A. & Nasiri-Tabrizi, B., 2021. "A critical assessment on synergistic improvement in PCM based thermal batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    4. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    5. Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Abdelsalam, M.Y. & Teamah, H.M. & Lightstone, M.F. & Cotton, J.S., 2020. "Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: Direct versus indirect heat exchange systems," Renewable Energy, Elsevier, vol. 147(P1), pages 77-88.
    7. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    8. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.
    9. Yang, Moucun & Moghimi, M.A. & Loillier, R. & Markides, C.N. & Kadivar, M., 2023. "Design of a latent heat thermal energy storage system under simultaneous charging and discharging for solar domestic hot water applications," Applied Energy, Elsevier, vol. 336(C).
    10. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    11. Zhao, Jianguo & Guo, Yong & Feng, Feng & Tong, Qinghua & Qv, Wenshan & Wang, Haiqing, 2011. "Microstructure and thermal properties of a paraffin/expanded graphite phase-change composite for thermal storage," Renewable Energy, Elsevier, vol. 36(5), pages 1339-1342.
    12. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    13. Mandal, Swaroop Kumar & Kumar, Samarjeet & Singh, Purushottam Kumar & Mishra, Santosh Kumar & Singh, D.K., 2020. "Performance investigation of nanocomposite based solar water heater," Energy, Elsevier, vol. 198(C).
    14. Kumar, G. Senthil & Nagarajan, D. & Chidambaram, L.A. & Kumaresan, V. & Ding, Y. & Velraj, R., 2016. "Role of PCM addition on stratification behaviour in a thermal storage tank – An experimental study," Energy, Elsevier, vol. 115(P1), pages 1168-1178.
    15. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    16. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    17. Afshan, Mahboob E. & Selvakumar, A.S & Velraj, R. & Rajaraman, R., 2020. "Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications," Renewable Energy, Elsevier, vol. 148(C), pages 876-888.
    18. Mathew, Adarsh Abi & Thangavel, Venugopal, 2021. "A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 1674-1693.
    19. Kumar, P. Manoj & Mylsamy, K., 2020. "A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater," Renewable Energy, Elsevier, vol. 162(C), pages 662-676.
    20. Muhammad, Mahmud Jamil & Muhammad, Isa Adamu & Sidik, Nor Azwadi Che & Yazid, Muhammad Noor Afiq Witri Muhammad & Mamat, Rizalman & Najafi, G., 2016. "The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 226-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:911-924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.