IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p1168-1178.html
   My bibliography  Save this article

Role of PCM addition on stratification behaviour in a thermal storage tank – An experimental study

Author

Listed:
  • Kumar, G. Senthil
  • Nagarajan, D.
  • Chidambaram, L.A.
  • Kumaresan, V.
  • Ding, Y.
  • Velraj, R.

Abstract

The present paper aims to analyse the effect of addition of phase change materials (PCM) encapsulated in spherical capsules at the top of a hot water storage tank for stratification enhancements during the charging process. The experiments were performed in a cylindrical storage tank of capacity 115 L at various flow rates and inlet temperatures of heat transfer fluid (HTF). The temperature profile along the height of the storage tank was analysed for both the thermal energy storage (TES) systems with and without the addition of PCM capsules. The experimental results showed that the overall charging time required was lesser in the sensible thermal energy storage system compared to the system with PCM capsules. However, this difference in charging time was reduced with increase in HTF inlet temperature. The stratification behaviour was analysed using the various non-dimensional numbers such as stratification number, Richardson number, charging efficiency and Cumulative charge fraction for both the TES systems. Better stratification was attained in sensible TES system at lower HTF inlet temperature for all flow rates considered. However, the effect of addition of PCM capsules increased the stratification capability as the temperature difference between the inlet HTF and PCM melting temperature was increased.

Suggested Citation

  • Kumar, G. Senthil & Nagarajan, D. & Chidambaram, L.A. & Kumaresan, V. & Ding, Y. & Velraj, R., 2016. "Role of PCM addition on stratification behaviour in a thermal storage tank – An experimental study," Energy, Elsevier, vol. 115(P1), pages 1168-1178.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:1168-1178
    DOI: 10.1016/j.energy.2016.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216312555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Felix Regin, A. & Solanki, S.C. & Saini, J.S., 2009. "An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation," Renewable Energy, Elsevier, vol. 34(7), pages 1765-1773.
    2. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    3. Oró, Eduard & Castell, Albert & Chiu, Justin & Martin, Viktoria & Cabeza, Luisa F., 2013. "Stratification analysis in packed bed thermal energy storage systems," Applied Energy, Elsevier, vol. 109(C), pages 476-487.
    4. Chung, Jae Dong & Cho, Sung Hwan & Tae, Choon Seob & Yoo, Hoseon, 2008. "The effect of diffuser configuration on thermal stratification in a rectangular storage tank," Renewable Energy, Elsevier, vol. 33(10), pages 2236-2245.
    5. Han, Y.M. & Wang, R.Z. & Dai, Y.J., 2009. "Thermal stratification within the water tank," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1014-1026, June.
    6. Mehling, H. & Cabeza, L.F. & Hippeli, S. & Hiebler, S., 2003. "PCM-module to improve hot water heat stores with stratification," Renewable Energy, Elsevier, vol. 28(5), pages 699-711.
    7. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele, 2013. "Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks," Energy, Elsevier, vol. 59(C), pages 600-616.
    8. Nwosu, P.N. & Agbiogwu, D., 2013. "Thermal analysis of a novel fibre-reinforced plastic solar hot water storage tank," Energy, Elsevier, vol. 60(C), pages 109-115.
    9. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Improving the energy storage capability of hot water tanks through wall material specification," Energy, Elsevier, vol. 78(C), pages 128-140.
    10. Mazman, Muhsin & Cabeza, Luisa F. & Mehling, Harald & Nogues, Miquel & Evliya, Hunay & Paksoy, Halime Ö., 2009. "Utilization of phase change materials in solar domestic hot water systems," Renewable Energy, Elsevier, vol. 34(6), pages 1639-1643.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Zhao & Yasheng Ji & Yanping Yuan & Zhaoli Zhang & Jun Lu, 2018. "Energy-Saving Analysis of Solar Heating System with PCM Storage Tank," Energies, MDPI, vol. 11(1), pages 1-18, January.
    2. Amine Allouhi, 2023. "Latent Thermal Energy Storage for Solar Industrial Drying Applications," Sustainability, MDPI, vol. 15(17), pages 1-18, September.
    3. Rendall, Joseph & Elatar, Ahmed & Nawaz, Kashif & Sun, Jian, 2023. "Medium-temperature phase change material integration in domestic heat pump water heaters for improved thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Jin, Xin & Zhang, Huihui & Huang, Gongsheng & Lai, Alvin CK., 2021. "Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 180(C), pages 637-657.
    5. Majumdar, Rudrodip & Saha, Sandip K., 2019. "Effect of varying extent of PCM capsule filling on thermal stratification performance of a storage tank," Energy, Elsevier, vol. 178(C), pages 1-20.
    6. Kutlu, Cagri & Zhang, Yanan & Elmer, Theo & Su, Yuehong & Riffat, Saffa, 2020. "A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs," Renewable Energy, Elsevier, vol. 152(C), pages 601-612.
    7. Jie Huang & Fei Xu & Zilong Wang & Hua Zhang, 2023. "An Experimental Investigation on the Performance of a Water Storage Tank with Sodium Acetate Trihydrate," Energies, MDPI, vol. 16(2), pages 1-14, January.
    8. Rendall, Joseph & Abu-Heiba, Ahmad & Gluesenkamp, Kyle & Nawaz, Kashif & Worek, William & Elatar, Ahmed, 2021. "Nondimensional convection numbers modeling thermally stratified storage tanks: Richardson's number and hot-water tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Wang, Zilong & Zhang, Hua & Huang, Huajie & Dou, Binlin & Huang, Xiuhui & Goula, Maria A., 2019. "The experimental investigation of the thermal stratification in a solar hot water tank," Renewable Energy, Elsevier, vol. 134(C), pages 862-874.
    10. Yamaç, Halil İbrahim & Koca, Ahmet, 2023. "Performance analysis of triple glazing water flow window systems during winter season," Energy, Elsevier, vol. 282(C).
    11. Afshan, Mahboob E. & Selvakumar, A.S & Velraj, R. & Rajaraman, R., 2020. "Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications," Renewable Energy, Elsevier, vol. 148(C), pages 876-888.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afshan, Mahboob E. & Selvakumar, A.S & Velraj, R. & Rajaraman, R., 2020. "Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications," Renewable Energy, Elsevier, vol. 148(C), pages 876-888.
    2. Abdelsalam, M.Y. & Teamah, H.M. & Lightstone, M.F. & Cotton, J.S., 2020. "Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: Direct versus indirect heat exchange systems," Renewable Energy, Elsevier, vol. 147(P1), pages 77-88.
    3. Frazzica, Andrea & Manzan, Marco & Sapienza, Alessio & Freni, Angelo & Toniato, Giuseppe & Restuccia, Giovanni, 2016. "Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications," Applied Energy, Elsevier, vol. 183(C), pages 1157-1167.
    4. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    5. Porteiro, Jacobo & Míguez, José Luis & Crespo, Bárbara & López González, Luis María & De Lara, José, 2015. "Experimental investigation of the thermal response of a thermal storage tank partially filled with different PCMs (phase change materials) to a steep demand," Energy, Elsevier, vol. 91(C), pages 202-214.
    6. David Vérez & Emiliano Borri & Alicia Crespo & Gabriel Zsembinszki & Belal Dawoud & Luisa F. Cabeza, 2021. "Experimental Study of a Small-Size Vacuum Insulated Water Tank for Building Applications," Sustainability, MDPI, vol. 13(10), pages 1-11, May.
    7. Li, Qiong & Huang, Xiaoqiao & Tai, Yonghang & Gao, Wenfeng & Wenxian, L. & Liu, Wuming, 2021. "Thermal stratification in a solar hot water storage tank with mantle heat exchanger," Renewable Energy, Elsevier, vol. 173(C), pages 1-11.
    8. Li, Gang, 2016. "Sensible heat thermal storage energy and exergy performance evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 897-923.
    9. Osorio, J.D. & Rivera-Alvarez, A. & Swain, M. & Ordonez, J.C., 2015. "Exergy analysis of discharging multi-tank thermal energy storage systems with constant heat extraction," Applied Energy, Elsevier, vol. 154(C), pages 333-343.
    10. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    11. Mondol, Jayanta Deb & Smyth, Mervyn & Zacharopoulos, Aggelos, 2011. "Experimental characterisation of a novel heat exchanger for a solar hot water application under indoor and outdoor conditions," Renewable Energy, Elsevier, vol. 36(6), pages 1766-1779.
    12. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    13. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    14. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    15. de Gracia, Alvaro & Cabeza, Luisa F., 2017. "Numerical simulation of a PCM packed bed system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1055-1063.
    16. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    17. Juan Zhao & Yasheng Ji & Yanping Yuan & Zhaoli Zhang & Jun Lu, 2017. "Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank," Energies, MDPI, vol. 10(12), pages 1-17, December.
    18. Gijs J. H. De Goeijen & Gerard J. M. Smit & Johann L. Hurink, 2016. "An Integer Linear Programming Model for an Ecovat Buffer," Energies, MDPI, vol. 9(8), pages 1-21, July.
    19. Murray, Robynne E. & Groulx, Dominic, 2014. "Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 2 simultaneous charging and discharging," Renewable Energy, Elsevier, vol. 63(C), pages 724-734.
    20. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:1168-1178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.