IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220312731.html
   My bibliography  Save this article

Experimental and Theoretical Analysis for the Performance of Evacuated Tube Collector Integrated with Helical Finned Heat Pipes using PCM Energy Storage

Author

Listed:
  • Essa, Mohamed A.
  • Rofaiel, Ibrahim Y.
  • Ahmed, Mohamed A.

Abstract

Evacuated Tube Solar Collector is a promising type of solar heaters. As an energy storage media, paraffin wax found to has a low thermal conductivity in both charging and discharging processes. In this paper, an Evacuated Tube Solar Collector with a helically finned heat pipe experimentally studied. Two collectors used during the tests. The first was the control system, including the conventional fins type. While the second one was the helical fins type. The experiments carried out considering flow rates of 0.165, 0.335, 0.5, and 0.665 L/min. Tap water was used as a heat transfer fluid. The results showed that the helical fins archive better temperature homogeneity in Paraffin along the tube axis than the conventional fins. Under the same flow rate, the maximum temperature difference was found to be 4 °C and 12.25 °C for the helical and the conventional fins systems, respectively. The helical fins found to achieve a daily efficiency enhancement over the conventional one by 15% and 13.6% for the flow rates of 0.5 and 0.665 L/min, respectively. Moreover, the solid to liquid phase change started in the helical fin system after the conventional one by 30–60 min.

Suggested Citation

  • Essa, Mohamed A. & Rofaiel, Ibrahim Y. & Ahmed, Mohamed A., 2020. "Experimental and Theoretical Analysis for the Performance of Evacuated Tube Collector Integrated with Helical Finned Heat Pipes using PCM Energy Storage," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312731
    DOI: 10.1016/j.energy.2020.118166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220312731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xue, H. Sheng, 2016. "Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage," Renewable Energy, Elsevier, vol. 86(C), pages 257-261.
    2. Murugan, M. & Vijayan, R. & Saravanan, A. & Jaisankar, S., 2019. "Performance enhancement of centrally finned twist inserted solar collector using corrugated booster reflectors," Energy, Elsevier, vol. 168(C), pages 858-869.
    3. Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, Mohammad & Metselaar, H.S.C., 2017. "Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes," Energy, Elsevier, vol. 127(C), pages 101-115.
    4. Feliński, P. & Sekret, R., 2016. "Experimental study of evacuated tube collector/storage system containing paraffin as a PCM," Energy, Elsevier, vol. 114(C), pages 1063-1072.
    5. Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, M. & Silakhori, M. & Metselaar, H.S.C., 2015. "Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material," Energy, Elsevier, vol. 91(C), pages 911-924.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Jing, Heran & Wang, Lincheng & Liu, Xin, 2022. "Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger," Energy, Elsevier, vol. 239(PD).
    2. Zakir Khan & Zulfiqar Ahmad Khan, 2021. "Performance Evaluation of Coupled Thermal Enhancement through Novel Wire-Wound Fins Design and Graphene Nano-Platelets in Shell-and-Tube Latent Heat Storage System," Energies, MDPI, vol. 14(13), pages 1-21, June.
    3. K. Chopra & V. V. Tyagi & Sudhir Kumar Pathak & Apaar Khajuria & A. K. Pandey & Nazaruddin Abd Rahman & Muhamad Mansor & Ahmet Sari, 2023. "Impact of Stearic Acid as Heat Storage Material on Energy Efficiency and Economic Feasibility of a Vacuum Tube Solar Water Heater," Energies, MDPI, vol. 16(11), pages 1-18, May.
    4. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Popli, Sakshi & Singh, Gurjeet & Sharma, R.K. & Sari, Ahmet, 2022. "Effect of simultaneous & consecutive melting/solidification of phase change material on domestic solar water heating system," Renewable Energy, Elsevier, vol. 188(C), pages 329-348.
    5. Wu, Tingting & Hu, Yanxin & Rong, Huiqiang & Wang, Changhong, 2021. "SEBS-based composite phase change material with thermal shape memory for thermal management applications," Energy, Elsevier, vol. 221(C).
    6. Wan Afin Fadzlin & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Zafar Said, 2022. "Global Challenges of Current Building-Integrated Solar Water Heating Technologies and Its Prospects: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-42, July.
    7. Sana Said & Sofiene Mellouli & Talal Alqahtani & Salem Algarni & Ridha Ajjel & Kaouther Ghachem & Lioua Kolsi, 2023. "An Experimental Comparison of the Performance of Various Evacuated Tube Solar Collector Designs," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    8. Naghavi, M.S. & Metselaar, H.S.C. & Ang, B.C. & Zamiri, G. & Esmailzadeh, A. & Nasiri-Tabrizi, B., 2021. "A critical assessment on synergistic improvement in PCM based thermal batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Arun Uniyal & Yogesh K. Prajapati & Lalit Ranakoti & Prabhakar Bhandari & Tej Singh & Brijesh Gangil & Shubham Sharma & Viyat Varun Upadhyay & Sayed M. Eldin, 2022. "Recent Advancements in Evacuated Tube Solar Water Heaters: A Critical Review of the Integration of Phase Change Materials and Nanofluids with ETCs," Energies, MDPI, vol. 15(23), pages 1-25, November.
    10. Sudhir Kumar Pathak & V. V. Tyagi & K. Chopra & A. K. Pandey & Ahmet Sari & Ammar M. Abdulateef, 2023. "Energetic, Exergetic, and Heat Transfer Assessment of PCM-Integrated Heat-Pipe-Based ETSC for Clear and Cloudy Weather Conditions," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    11. Nokhosteen, Arman & Sobhansarbandi, Sarvenaz, 2021. "Numerical modeling and experimental cross-validation of a solar thermal collector through an innovative hybrid CFD model," Renewable Energy, Elsevier, vol. 172(C), pages 918-928.
    12. Feng, Li & Liu, Jiajun & Lu, Haitao & Chen, Yuning & Wu, Shenyu, 2022. "A parametric study on the efficiency of a solar evacuated tube collector using phase change materials: A transient simulation," Renewable Energy, Elsevier, vol. 199(C), pages 745-758.
    13. Mohamed Boujelbene & Amira M. Hussin & Seyed Abdollah Mansouri Mehryan & Mohsen Sharifpur, 2023. "The Effect of Different Configurations of Copper Structures on the Melting Flow in a Latent Heat Thermal Energy Semi-Cylindrical Unit," Mathematics, MDPI, vol. 11(20), pages 1-20, October.
    14. Essa, Mohamed A. & Asal, Manar & Saleh, Mohamed A. & Shaltout, R.E., 2021. "A comparative study of the performance of a novel helical direct flow U-Tube evacuated tube collector," Renewable Energy, Elsevier, vol. 163(C), pages 2068-2080.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arun Uniyal & Yogesh K. Prajapati & Lalit Ranakoti & Prabhakar Bhandari & Tej Singh & Brijesh Gangil & Shubham Sharma & Viyat Varun Upadhyay & Sayed M. Eldin, 2022. "Recent Advancements in Evacuated Tube Solar Water Heaters: A Critical Review of the Integration of Phase Change Materials and Nanofluids with ETCs," Energies, MDPI, vol. 15(23), pages 1-25, November.
    2. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2020. "Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays," Applied Energy, Elsevier, vol. 261(C).
    3. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, Mohammad & Metselaar, H.S.C., 2017. "Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes," Energy, Elsevier, vol. 127(C), pages 101-115.
    5. Nishant Modi & Xiaolin Wang & Michael Negnevitsky, 2023. "Solar Hot Water Systems Using Latent Heat Thermal Energy Storage: Perspectives and Challenges," Energies, MDPI, vol. 16(4), pages 1-20, February.
    6. Alshukri, Mohammed J. & Eidan, Adel A. & Najim, Saleh Ismail, 2021. "Thermal performance of heat pipe evacuated tube solar collector integrated with different types of phase change materials at various location," Renewable Energy, Elsevier, vol. 171(C), pages 635-646.
    7. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    8. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    9. Mohammad Sajad Naghavi Sanjani & Mahyar Silakhori & Bee Chin Ang & Hendrik Simon Cornelis Metselaar & Sayed Mohammad Mousavi Gazafroudi & Younes Noorollahi, 2023. "Experimental Investigation on Solar Water Heater Integrated with Thermal Battery Using Phase Change Material and Porous Media," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    10. Joo, Hong-Jin & Kwak, Hee-Youl & Kong, Minsuk, 2022. "Effect of twisted tape inserts on thermal performance of heat pipe evacuated-tube solar thermal collector," Energy, Elsevier, vol. 254(PB).
    11. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    12. Wan Afin Fadzlin & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Zafar Said, 2022. "Global Challenges of Current Building-Integrated Solar Water Heating Technologies and Its Prospects: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-42, July.
    13. Mathew, Adarsh Abi & Thangavel, Venugopal, 2021. "A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 1674-1693.
    14. Kumar, P. Manoj & Mylsamy, K., 2020. "A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater," Renewable Energy, Elsevier, vol. 162(C), pages 662-676.
    15. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    16. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Li, Dong & Cai, Jiangkuo & Arıcı, Müslüm & Zhao, Xuefeng & Meng, Lan & Wu, Yangyang & Gao, Meng & Wang, Di, 2024. "Operational characteristics of solar-gas combined heating water system with phase change heat storage units for oilfield hot water stations," Energy, Elsevier, vol. 302(C).
    18. Motte, F. & Notton, G. & Lamnatou, Chr & Cristofari, C. & Chemisana, D., 2019. "Numerical study of PCM integration impact on overall performances of a highly building-integrated solar collector," Renewable Energy, Elsevier, vol. 137(C), pages 10-19.
    19. Das, Debayan & Lukose, Leo & Basak, Tanmay, 2018. "Role of multiple solar heaters along the walls for the thermal management during natural convection in square and triangular cavities," Renewable Energy, Elsevier, vol. 121(C), pages 205-229.
    20. Ait Laasri, Imad & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Energy performance assessment of a novel enhanced solar thermal system with topology optimized latent heat thermal energy storage unit for domestic water heating," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.