IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v135y2021ics1364032120305487.html
   My bibliography  Save this article

A critical assessment on synergistic improvement in PCM based thermal batteries

Author

Listed:
  • Naghavi, M.S.
  • Metselaar, H.S.C.
  • Ang, B.C.
  • Zamiri, G.
  • Esmailzadeh, A.
  • Nasiri-Tabrizi, B.

Abstract

Current solar water heaters still facing some weaknesses in the performance and efficiency loss, such as the dependency of heat transfer rate between the heat pipe and the cold water to temperature difference and flowrate, and stratification effect in the hot water tank, which all affects total deliverable hot water volume to the end-user. Within the past decade, many research activities attacked these issues and provided different types of solutions. One of the solutions is using phase change materials as a thermal energy storage unit or as part of it. This paper compares 21 parameters related to the technical specifications, structural design, economic, and health related issues of four of the full-scale experimental studies of solar water heaters with latent heat thermal energy storage. This study is essential and indicative to facilitate and pave the way for future research and development of such products. All of the reported solar water heater systems with latent heat thermal energy storage unit systems were the primary design, with no optimization study. With the positive improvement in the performance of these units, it could be expected that the new generation of SWH systems will utilize the advantages of the latent heat storage unit, by using PCMs. There is potential for improvement in these systems in the fields related to the optimization of the TES unit, infrastructure, and cost of the system. The impact of weather conditions in different climatic conditions needs more investigation.

Suggested Citation

  • Naghavi, M.S. & Metselaar, H.S.C. & Ang, B.C. & Zamiri, G. & Esmailzadeh, A. & Nasiri-Tabrizi, B., 2021. "A critical assessment on synergistic improvement in PCM based thermal batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120305487
    DOI: 10.1016/j.rser.2020.110259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120305487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.
    2. Essa, Mohamed A. & Rofaiel, Ibrahim Y. & Ahmed, Mohamed A., 2020. "Experimental and Theoretical Analysis for the Performance of Evacuated Tube Collector Integrated with Helical Finned Heat Pipes using PCM Energy Storage," Energy, Elsevier, vol. 206(C).
    3. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Domestic hot water storage: Balancing thermal and sanitary performance," Energy Policy, Elsevier, vol. 68(C), pages 334-339.
    4. Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, Mohammad & Metselaar, H.S.C., 2017. "Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes," Energy, Elsevier, vol. 127(C), pages 101-115.
    5. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Improving the energy storage capability of hot water tanks through wall material specification," Energy, Elsevier, vol. 78(C), pages 128-140.
    6. Nallusamy, N. & Sampath, S. & Velraj, R., 2007. "Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources," Renewable Energy, Elsevier, vol. 32(7), pages 1206-1227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Sajad Naghavi Sanjani & Mahyar Silakhori & Bee Chin Ang & Hendrik Simon Cornelis Metselaar & Sayed Mohammad Mousavi Gazafroudi & Younes Noorollahi, 2023. "Experimental Investigation on Solar Water Heater Integrated with Thermal Battery Using Phase Change Material and Porous Media," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    2. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, M. & Silakhori, M. & Metselaar, H.S.C., 2015. "Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material," Energy, Elsevier, vol. 91(C), pages 911-924.
    2. Mohammad Sajad Naghavi Sanjani & Mahyar Silakhori & Bee Chin Ang & Hendrik Simon Cornelis Metselaar & Sayed Mohammad Mousavi Gazafroudi & Younes Noorollahi, 2023. "Experimental Investigation on Solar Water Heater Integrated with Thermal Battery Using Phase Change Material and Porous Media," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    3. Arun Uniyal & Yogesh K. Prajapati & Lalit Ranakoti & Prabhakar Bhandari & Tej Singh & Brijesh Gangil & Shubham Sharma & Viyat Varun Upadhyay & Sayed M. Eldin, 2022. "Recent Advancements in Evacuated Tube Solar Water Heaters: A Critical Review of the Integration of Phase Change Materials and Nanofluids with ETCs," Energies, MDPI, vol. 15(23), pages 1-25, November.
    4. Alshukri, Mohammed J. & Eidan, Adel A. & Najim, Saleh Ismail, 2021. "Thermal performance of heat pipe evacuated tube solar collector integrated with different types of phase change materials at various location," Renewable Energy, Elsevier, vol. 171(C), pages 635-646.
    5. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    7. Mathew, Adarsh Abi & Thangavel, Venugopal, 2021. "A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 1674-1693.
    8. Kumar, P. Manoj & Mylsamy, K., 2020. "A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater," Renewable Energy, Elsevier, vol. 162(C), pages 662-676.
    9. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    10. Xia, L. & Zhang, P. & Wang, R.Z., 2010. "Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model," Energy, Elsevier, vol. 35(5), pages 2022-2032.
    11. Hands, Stuart & Sethuvenkatraman, Subbu & Peristy, Mark & Rowe, Daniel & White, Stephen, 2016. "Performance analysis & energy benefits of a desiccant based solar assisted trigeneration system in a building," Renewable Energy, Elsevier, vol. 85(C), pages 865-879.
    12. Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, Mohammad & Metselaar, H.S.C., 2017. "Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes," Energy, Elsevier, vol. 127(C), pages 101-115.
    13. Ersöz, Mustafa Ali, 2016. "Effects of different working fluid use on the energy and exergy performance for evacuated tube solar collector with thermosyphon heat pipe," Renewable Energy, Elsevier, vol. 96(PA), pages 244-256.
    14. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    15. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    16. Huiqian Guo & ELSaeed Saad ELSihy & Zhirong Liao & Xiaoze Du, 2021. "A Comparative Study on the Performance of Single and Multi-Layer Encapsulated Phase Change Material Packed-Bed Thermocline Tanks," Energies, MDPI, vol. 14(8), pages 1-24, April.
    17. Zakir Khan & Zulfiqar Ahmad Khan, 2021. "Performance Evaluation of Coupled Thermal Enhancement through Novel Wire-Wound Fins Design and Graphene Nano-Platelets in Shell-and-Tube Latent Heat Storage System," Energies, MDPI, vol. 14(13), pages 1-21, June.
    18. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    19. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    20. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120305487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.