IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp655-662.html
   My bibliography  Save this article

Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity

Author

Listed:
  • Gil, María V.
  • Riaza, Juan
  • Álvarez, Lucía
  • Pevida, Covadonga
  • Rubiera, Fernando

Abstract

Oxy-fuel combustion is usually performed in pf reactors under an enriched O2 atmosphere of CO2 to obtain a high CO2 content in the flue gases. The effect of the differences in thermal properties of N2 (conventional air combustion) and CO2 (oxy-fuel combustion) on the devolatilization process needs to be evaluated. The morphology and reactivity of biomass chars obtained by devolatilization in an EFR (entrained flow reactor) at 1300 °C under N2 and CO2, simulating air and oxy-fuel combustion atmospheres, were studied. Four biomasses were selected: PIN (pine sawdust), OW (olive waste), OS (olive stones) and CW (coffee waste). The apparent volatile yield under CO2 was greater than under N2. The morphology of the chars was assessed using SEM (scanning electron microscopy). The higher mass loss and the lower char particle size obtained during CO2 devolatilization indicate that a char-CO2 reaction occurred. The reactivity indices indicate a lower reactivity of the CO2-chars than the N2-chars. The devolatilization atmosphere had a significant effect on the biomass chars, suggesting that gasification had occurred during CO2 devolatilization. The OW, OS and CW chars showed a very high reactivity up to intermediate conversion levels, probably due to the catalytic effect of inherent alkali metals.

Suggested Citation

  • Gil, María V. & Riaza, Juan & Álvarez, Lucía & Pevida, Covadonga & Rubiera, Fernando, 2015. "Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity," Energy, Elsevier, vol. 91(C), pages 655-662.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:655-662
    DOI: 10.1016/j.energy.2015.08.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riaza, J. & Álvarez, L. & Gil, M.V. & Pevida, C. & Pis, J.J. & Rubiera, F., 2011. "Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor," Energy, Elsevier, vol. 36(8), pages 5314-5319.
    2. Riaza, J. & Gil, M.V. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion of coal and biomass blends," Energy, Elsevier, vol. 41(1), pages 429-435.
    3. Wang, Chang’an & Zhang, Xiaoming & Liu, Yinhe & Che, Defu, 2012. "Pyrolysis and combustion characteristics of coals in oxyfuel combustion," Applied Energy, Elsevier, vol. 97(C), pages 264-273.
    4. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres," Energy, Elsevier, vol. 48(1), pages 510-518.
    5. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor," Applied Energy, Elsevier, vol. 91(1), pages 67-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hongmei & Chen, Zhengjie & Ma, Wenhui & Cao, Shijie, 2022. "Effect of the reactive blend conditions on the thermal properties of waste biomass and soft coal as a reducing agent for silicon production," Renewable Energy, Elsevier, vol. 187(C), pages 302-319.
    2. Wang, Guangwei & Zhang, Jianliang & Shao, Jiugang & Liu, Zhengjian & Wang, Haiyang & Li, Xinyu & Zhang, Pengcheng & Geng, Weiwei & Zhang, Guohua, 2016. "Experimental and modeling studies on CO2 gasification of biomass chars," Energy, Elsevier, vol. 114(C), pages 143-154.
    3. Ma, Meng & Wang, Jiaofei & Bai, Yonghui & Lv, Peng & Song, Xudong & Su, Weiguang & Wei, Juntao & Yu, Guangsuo, 2022. "Decoupling of volatile–char interaction in co-pyrolysis of cow manure and bituminous coal and deactivation mechanism of coal char reactivity," Energy, Elsevier, vol. 251(C).
    4. Tian, Hong & Hu, Qingsong & Wang, Jiawei & Chen, Donglin & Yang, Yang & Bridgwater, Anthony V., 2021. "Kinetic study on the CO2 gasification of biochar derived from Miscanthus at different processing conditions," Energy, Elsevier, vol. 217(C).
    5. Moon, Hyeong-Bin & Lee, Ji-Hwan & Kim, Hyung-Tae & Lee, Jin-Wook & Lee, Byoung-Hwa & Jeon, Chung-Hwan, 2024. "Effect of high-pressure pyrolysis on syngas and char structure of petroleum coke," Energy, Elsevier, vol. 299(C).
    6. Yuan, Maobo & Wang, Chang’an & Zhao, Lin & Wang, Pengqian & Wang, Chaowei & Che, Defu, 2020. "Experimental and kinetics study of NO heterogeneous reduction by the blends of pyrolyzed and gasified semi-coke," Energy, Elsevier, vol. 207(C).
    7. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
    8. Ling, Jester Lih Jie & Yang, Won & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2023. "A comparative review on advanced biomass oxygen fuel combustion technologies for carbon capture and storage," Energy, Elsevier, vol. 284(C).
    9. Mosqueda, Alexander & Wei, Juntao & Medrano, Katleya & Gonzales, Hazel & Ding, Lu & Yu, Guangsuo & Yoshikawa, Kunio, 2019. "Co-gasification reactivity and synergy of banana residue hydrochar and anthracite coal blends," Applied Energy, Elsevier, vol. 250(C), pages 92-97.
    10. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.
    11. Tanui, J.K. & Kioni, P.N. & Mirre, T. & Nowitzki, M. & Karuri, N.W., 2020. "The influence of particle packing density on wood combustion in a fixed bed under oxy-fuel conditions," Energy, Elsevier, vol. 194(C).
    12. Anupam, Kumar & Sharma, Arvind Kumar & Lal, Priti Shivhare & Dutta, Suman & Maity, Sudip, 2016. "Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding," Energy, Elsevier, vol. 106(C), pages 743-756.
    13. Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2017. "Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed," Energy, Elsevier, vol. 138(C), pages 776-784.
    14. Zhang, Zihang & Yi, Baojun & Sun, Zhengshuai & Zhang, Qi & Feng, He & Hu, Hongyun & Huang, Xiangguo & Zhao, Chunqing, 2021. "Reaction process and characteristics for coal char gasification under changed CO2/H2O atmosphere in various reaction stages," Energy, Elsevier, vol. 229(C).
    15. Zhang, Heng & Li, Junguo & Yang, Xin & Song, Shuangshuang & Wang, Zhiqing & Huang, Jiejie & Zhang, Yongqi & Fang, Yitian, 2020. "Influence of coal ash on CO2 gasification reactivity of corn stalk char," Renewable Energy, Elsevier, vol. 147(P1), pages 2056-2063.
    16. Parascanu, M.M. & Sandoval-Salas, F. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2017. "Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 509-522.
    17. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.
    18. Saiman Ding & Efthymios Kantarelis & Klas Engvall, 2020. "Effects of Porous Structure Development and Ash on the Steam Gasification Reactivity of Biochar Residues from a Commercial Gasifier at Different Temperatures," Energies, MDPI, vol. 13(19), pages 1-19, September.
    19. Guizani, Chamseddine & Jeguirim, Mejdi & Gadiou, Roger & Escudero Sanz, Fransisco Javier & Salvador, Sylvain, 2016. "Biomass char gasification by H2O, CO2 and their mixture: Evolution of chemical, textural and structural properties of the chars," Energy, Elsevier, vol. 112(C), pages 133-145.
    20. Li, Jie & Chang, Guozhang & Song, Ke & Hao, Bolun & Wang, Cuiping & Zhang, Jian & Yue, Guangxi & Hu, Shugang, 2023. "Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity," Renewable Energy, Elsevier, vol. 203(C), pages 434-444.
    21. Mortari, Daniela A. & Pereira, Fernando M. & Crnkovic, Paula M., 2020. "Experimental investigation of the carbon dioxide effect on the devolatilization and combustion of a coal and sugarcane bagasse," Energy, Elsevier, vol. 204(C).
    22. Yu, Junqin & Xia, Weidong & Areeprasert, Chinnathan & Ding, Lu & Umeki, Kentaro & Yu, Guangsuo, 2022. "Catalytic effects of inherent AAEM on char gasification: A mechanism study using in-situ Raman," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    2. Mostafa, Mohamed E. & He, Limo & Xu, Jun & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "Investigating the effect of integrated CO2 and H2O on the reactivity and kinetics of biomass pellets oxy-steam combustion using new double parallel volumetric model (DVM)," Energy, Elsevier, vol. 179(C), pages 343-357.
    3. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    4. Xu, Jun & Su, Sheng & Sun, Zhijun & Qing, Mengxia & Xiong, Zhe & Wang, Yi & Jiang, Long & Hu, Song & Xiang, Jun, 2016. "Effects of steam and CO2 on the characteristics of chars during devolatilization in oxy-steam combustion process," Applied Energy, Elsevier, vol. 182(C), pages 20-28.
    5. Zhou, Kun & Lin, Qizhao & Hu, Hongwei & Hu, Huiqing & Song, Lanbo, 2017. "The ignition characteristics and combustion processes of the single coal slime particle under different hot-coflow conditions in N2/O2 atmosphere," Energy, Elsevier, vol. 136(C), pages 173-184.
    6. Álvarez, L. & Yin, C. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions," Energy, Elsevier, vol. 62(C), pages 255-268.
    7. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    8. Díez, Luis I. & García-Mariaca, Alexander & Canalís, Paula & Llera, Eva, 2023. "Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 284(C).
    9. Álvarez, L. & Gharebaghi, M. & Jones, J.M. & Pourkashanian, M. & Williams, A. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release," Applied Energy, Elsevier, vol. 104(C), pages 653-665.
    10. Lasek, Janusz A. & Janusz, Marcin & Zuwała, Jarosław & Głód, Krzysztof & Iluk, Andrzej, 2013. "Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures," Energy, Elsevier, vol. 62(C), pages 105-112.
    11. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei & Lu, Qinggang, 2017. "The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion," Applied Energy, Elsevier, vol. 190(C), pages 553-562.
    12. Yi, Baojun & Zhang, Liqi & Huang, Fang & Mao, Zhihui & Zheng, Chuguang, 2014. "Effect of H2O on the combustion characteristics of pulverized coal in O2/CO2 atmosphere," Applied Energy, Elsevier, vol. 132(C), pages 349-357.
    13. Tanui, J.K. & Kioni, P.N. & Mirre, T. & Nowitzki, M. & Karuri, N.W., 2020. "The influence of particle packing density on wood combustion in a fixed bed under oxy-fuel conditions," Energy, Elsevier, vol. 194(C).
    14. Bai, Yonghui & Wang, Yulong & Zhu, Shenghua & Li, Fan & Xie, Kechang, 2014. "Structural features and gasification reactivity of coal chars formed in Ar and CO2 atmospheres at elevated pressures," Energy, Elsevier, vol. 74(C), pages 464-470.
    15. López, R. & Fernández, C. & Fierro, J. & Cara, J. & Martínez, O. & Sánchez, M.E., 2014. "Oxy-combustion of corn, sunflower, rape and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis," Energy, Elsevier, vol. 74(C), pages 845-854.
    16. Duan, Lunbo & Jiang, Zhongxiao & Chen, Xiaoping & Zhao, Changsui, 2013. "Investigation on water vapor effect on direct sulfation during wet-recycle oxy-coal combustion," Applied Energy, Elsevier, vol. 108(C), pages 121-127.
    17. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres," Energy, Elsevier, vol. 48(1), pages 510-518.
    18. Wang, Chaowei & Wang, Chang'an & Feng, Qinqin & Mao, Qisen & Gao, Xinyue & Du, Yongbo & Li, Guangyu & Che, Defu, 2022. "Experimental evaluation on NOx formation and burnout characteristics of oxy-fuel co-combustion of ultra-low volatile carbon-based solid fuels and bituminous coal," Energy, Elsevier, vol. 248(C).
    19. Granados, David A. & Chejne, Farid & Mejía, Juan M. & Gómez, Carlos A. & Berrío, Ariel & Jurado, William J., 2014. "Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln," Energy, Elsevier, vol. 64(C), pages 615-625.
    20. Zhang, Xiaoyu & Zhu, Shujun & Zhu, Jianguo & Liu, Yuhua & Zhang, Jiahang & Hui, Jicheng & Ding, Hongliang & Cao, Xiaoyang & Lyu, Qinggang, 2023. "Preheating and combustion characteristics of anthracite under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:655-662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.