IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp615-625.html
   My bibliography  Save this article

Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln

Author

Listed:
  • Granados, David A.
  • Chejne, Farid
  • Mejía, Juan M.
  • Gómez, Carlos A.
  • Berrío, Ariel
  • Jurado, William J.

Abstract

The effect of Flue Gas Recirculation (FGR) during Oxy-Fuel Combustion in a Rotary Cement Kiln was analyzed by using a CFD model applied to coal combustion process. The CFD model is based on 3D-balance equations for mass, species, energy and momentum. Turbulence and radiation model coupled to a chemical kinetic mechanism for pyrolysis processes, gas–solid and gas–gas reactions was included to predicts species and flame temperature distribution, as well as convective and radiation energy fluxes. The model was used to study coal combustion with air and with oxygen for FGR between 30 and 85% as controller parameter for temperature in the process. Flame length effect and heat transfer by convection and radiation to the clinkering process for several recirculation ratios was studied. Theoretical studies predicted a located increase of energy flux and a reduction in flame length with respect to the traditional system which is based on air combustion. The impact of FGR on the oxy-fuel combustion process and different energy scenarios in cement kilns to increase energy efficiency and clinker production were studied and evaluated. Simulation results were in close agreement with experimental data, where the maximum deviation was 7%.

Suggested Citation

  • Granados, David A. & Chejne, Farid & Mejía, Juan M. & Gómez, Carlos A. & Berrío, Ariel & Jurado, William J., 2014. "Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln," Energy, Elsevier, vol. 64(C), pages 615-625.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:615-625
    DOI: 10.1016/j.energy.2013.09.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.09.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kangwanpongpan, Tanin & Corrêa da Silva, Rodrigo & Krautz, Hans Joachim, 2012. "Prediction of oxy-coal combustion through an optimized weighted sum of gray gases model," Energy, Elsevier, vol. 41(1), pages 244-251.
    2. Chui, E.H. & Majeski, A.J. & Douglas, M.A. & Tan, Y. & Thambimuthu, K.V., 2004. "Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts," Energy, Elsevier, vol. 29(9), pages 1285-1296.
    3. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres," Energy, Elsevier, vol. 48(1), pages 510-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirzakhani, M. Amin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Energy benchmarking of cement industry, based on Process Integration concepts," Energy, Elsevier, vol. 130(C), pages 382-391.
    2. Yu, Byeonghun & Lee, Seungro & Lee, Chang-Eon, 2015. "Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation," Energy, Elsevier, vol. 91(C), pages 119-127.
    3. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Roy, Monisha & Roy, S. & Basak, Tanmay, 2015. "Role of various moving walls on energy transfer rates via heat flow visualization during mixed convection in square cavities," Energy, Elsevier, vol. 82(C), pages 1-22.
    5. Raquel Pérez-Orozco & David Patiño & Jacobo Porteiro & José Luís Míguez, 2020. "Novel Test Bench for the Active Reduction of Biomass Particulate Matter Emissions," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    6. Wu, Zhi-Jun & Yu, Xiao & Fu, Le-Zhong & Deng, Jun & Hu, Zong-Jie & Li, Li-Guang, 2014. "A high efficiency oxyfuel internal combustion engine cycle with water direct injection for waste heat recovery," Energy, Elsevier, vol. 70(C), pages 110-120.
    7. García-Luna, S. & Ortiz, C. & Chacartegui, R. & Pérez-Maqueda, L.A., 2023. "Large-scale oxygen-enriched air (OEA) production from polymeric membranes for partial oxycombustion processes," Energy, Elsevier, vol. 268(C).
    8. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    9. Zhang, Yu & Wang, Shuman, 2024. "Numerical simulation of flue gas recirculation in a lime rotary kiln," Energy, Elsevier, vol. 297(C).
    10. Hashimoto, Nozomu & Shirai, Hiromi, 2014. "Numerical simulation of sub-bituminous coal and bituminous coal mixed combustion employing tabulated-devolatilization-process model," Energy, Elsevier, vol. 71(C), pages 399-413.
    11. Jabari, Farkhondeh & Mohammadi-ivatloo, Behnam & Bannae Sharifian, Mohammad Bagher & Nojavan, Sayyad, 2018. "Design and robust optimization of a novel industrial continuous heat treatment furnace," Energy, Elsevier, vol. 142(C), pages 896-910.
    12. Oliveira, Flávio A.D. & Carvalho, João A. & Sobrinho, Pedro M. & de Castro, André, 2014. "Analysis of oxy-fuel combustion as an alternative to combustion with air in metal reheating furnaces," Energy, Elsevier, vol. 78(C), pages 290-297.
    13. Granados, D.A. & Chejne, F. & Mejía, J.M., 2015. "Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns," Applied Energy, Elsevier, vol. 158(C), pages 107-117.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    2. Warzecha, Piotr & Boguslawski, Andrzej, 2014. "LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies," Energy, Elsevier, vol. 66(C), pages 732-743.
    3. Álvarez, L. & Yin, C. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions," Energy, Elsevier, vol. 62(C), pages 255-268.
    4. Sun, Youhong & Bai, Fengtian & Lü, Xiaoshu & Jia, Chunxia & Wang, Qing & Guo, Mingyi & Li, Qiang & Guo, Wei, 2015. "Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model," Energy, Elsevier, vol. 82(C), pages 705-713.
    5. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    6. Gil, María V. & Riaza, Juan & Álvarez, Lucía & Pevida, Covadonga & Rubiera, Fernando, 2015. "Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity," Energy, Elsevier, vol. 91(C), pages 655-662.
    7. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    8. Riaza, J. & Álvarez, L. & Gil, M.V. & Pevida, C. & Pis, J.J. & Rubiera, F., 2011. "Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor," Energy, Elsevier, vol. 36(8), pages 5314-5319.
    9. Lawal, Mohammed S. & Fairweather, Michael & Gogolek, Peter & Ingham, Derek B. & Ma, Lin & Pourkashanian, Mohamed & Williams, Alan, 2013. "CFD predictions of wake-stabilised jet flames in a cross-flow," Energy, Elsevier, vol. 53(C), pages 259-269.
    10. Ma, Zhangke & Cheng, Leming & Wang, Qinhui & Li, Liyao & Luo, Guanwen & Zhang, Weiguo, 2022. "Co-combustion characteristics and CO2 emissions of low-calorific multi-fuels by TG-FTIR analysis," Energy, Elsevier, vol. 252(C).
    11. Zou, Huihuang & Liu, Chao & Evrendilek, Fatih & He, Yao & Liu, Jingyong, 2021. "Evaluation of reaction mechanisms and emissions of oily sludge and coal co-combustions in O2/CO2 and O2/N2 atmospheres," Renewable Energy, Elsevier, vol. 171(C), pages 1327-1343.
    12. Tanui, J.K. & Kioni, P.N. & Mirre, T. & Nowitzki, M. & Karuri, N.W., 2020. "The influence of particle packing density on wood combustion in a fixed bed under oxy-fuel conditions," Energy, Elsevier, vol. 194(C).
    13. Fakudze, Sandile & Zhang, Yu & Wei, Yingyuan & Li, Yueh-Heng & Chen, Jianqiang & Wang, Jiaxin & Han, Jiangang, 2023. "Taguchi-optimized oxy-combustion of hydrochar/coal blends for CO2 capture and maximized combustion performance," Energy, Elsevier, vol. 267(C).
    14. Wang, Kai & Han, Tao & Deng, Jun & Zhang, Yanni, 2022. "Comparison of combustion characteristics and kinetics of Jurassic and Carboniferous-Permian coals in China," Energy, Elsevier, vol. 254(PB).
    15. Karim, Md Rezwanul & Bhuiyan, Arafat Ahmed & Sarhan, Abd Alhamid Rafea & Naser, Jamal, 2020. "CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler," Renewable Energy, Elsevier, vol. 146(C), pages 1416-1428.
    16. Xiaolin Chen & Junlin Xie & Shuxia Mei & Feng He, 2018. "NOx and SO 2 Emissions during Co-Combustion of RDF and Anthracite in the Environment of Precalciner," Energies, MDPI, vol. 11(2), pages 1-13, February.
    17. Bai, Yonghui & Wang, Yulong & Zhu, Shenghua & Li, Fan & Xie, Kechang, 2014. "Structural features and gasification reactivity of coal chars formed in Ar and CO2 atmospheres at elevated pressures," Energy, Elsevier, vol. 74(C), pages 464-470.
    18. Oh, Jeongseog, 2016. "Spectral characteristics of a premixed oxy-methane flame in atmospheric conditions," Energy, Elsevier, vol. 116(P1), pages 986-997.
    19. López, R. & Fernández, C. & Fierro, J. & Cara, J. & Martínez, O. & Sánchez, M.E., 2014. "Oxy-combustion of corn, sunflower, rape and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis," Energy, Elsevier, vol. 74(C), pages 845-854.
    20. Hu, Fan & Xiong, Biao & Liu, Xuhui & Huang, Xiaohong & Li, Yu & Liu, Zhaohui, 2023. "Optimized TGA-based experimental method for studying intrinsic kinetics of coal char oxidation under moderate or intense low-oxygen dilution oxy-fuel conditions," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:615-625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.