IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp553-562.html
   My bibliography  Save this article

The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion

Author

Listed:
  • Xu, Mingxin
  • Li, Shiyuan
  • Wu, Yinghai
  • Jia, Lufei
  • Lu, Qinggang

Abstract

To explain the reduction process of recycled NO over char during oxy-fuel fluidized bed combustion, the characteristics associated with the reduction of recycled NO were investigated in the present study. The experimental results were obtained using a bubbling fluidized bed. The effects of typical impurities within the recycled flue gas on the reduction of recycled NO were also studied. It was determined that significant reduction of the recycled NO over char occurred under oxy-fuel fluidized bed combustion conditions. The apparent activation energy of the recycled NO reduction reaction was much lower when combustion occurred. The competition between the NO formation from char nitrogen and the reduction of recycled NO over char determined the final NO concentration of the flue gas. The recycled NO concentration had little influence on the reduction ratios during oxy-fuel fluidized bed combustion when NO formation from char nitrogen was considered. Recycled SO2 can enhance the reduction of recycled NO over char during oxy-fuel combustion while the low concentration of recycled CO had a little effect on the process of recycled NO reduction. The reduction ratios of recycled NO increased as the recycled SO2 concentration increased. Moreover, significant capture of recycled SO2 was observed during oxy-fuel fluidized bed combustion.

Suggested Citation

  • Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei & Lu, Qinggang, 2017. "The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion," Applied Energy, Elsevier, vol. 190(C), pages 553-562.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:553-562
    DOI: 10.1016/j.apenergy.2016.12.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916318463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Diego, L.F. & de las Obras-Loscertales, M. & Rufas, A. & García-Labiano, F. & Gayán, P. & Abad, A. & Adánez, J., 2013. "Pollutant emissions in a bubbling fluidized bed combustor working in oxy-fuel operating conditions: Effect of flue gas recirculation," Applied Energy, Elsevier, vol. 102(C), pages 860-867.
    2. Kunze, Christian & Spliethoff, Hartmut, 2012. "Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants," Applied Energy, Elsevier, vol. 94(C), pages 109-116.
    3. Holtmeyer, Melissa L. & Kumfer, Benjamin M. & Axelbaum, Richard L., 2012. "Effects of biomass particle size during cofiring under air-fired and oxyfuel conditions," Applied Energy, Elsevier, vol. 93(C), pages 606-613.
    4. Xu, Jun & Su, Sheng & Sun, Zhijun & Qing, Mengxia & Xiong, Zhe & Wang, Yi & Jiang, Long & Hu, Song & Xiang, Jun, 2016. "Effects of steam and CO2 on the characteristics of chars during devolatilization in oxy-steam combustion process," Applied Energy, Elsevier, vol. 182(C), pages 20-28.
    5. Liu, Hao & Shao, Yingjuan, 2010. "Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant," Applied Energy, Elsevier, vol. 87(10), pages 3162-3170, October.
    6. Wang, Chang’an & Zhang, Xiaoming & Liu, Yinhe & Che, Defu, 2012. "Pyrolysis and combustion characteristics of coals in oxyfuel combustion," Applied Energy, Elsevier, vol. 97(C), pages 264-273.
    7. Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
    8. Wang, B. & Sun, L.S. & Su, S. & Xiang, J. & Hu, S. & Fei, H., 2012. "A kinetic study of NO formation during oxy-fuel combustion of pyridine," Applied Energy, Elsevier, vol. 92(C), pages 361-368.
    9. Leckner, Bo & Gómez-Barea, Alberto, 2014. "Oxy-fuel combustion in circulating fluidized bed boilers," Applied Energy, Elsevier, vol. 125(C), pages 308-318.
    10. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    11. Tan, Y. & Jia, L. & Wu, Y. & Anthony, E.J., 2012. "Experiences and results on a 0.8MWth oxy-fuel operation pilot-scale circulating fluidized bed," Applied Energy, Elsevier, vol. 92(C), pages 343-347.
    12. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    13. Álvarez, L. & Gharebaghi, M. & Jones, J.M. & Pourkashanian, M. & Williams, A. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release," Applied Energy, Elsevier, vol. 104(C), pages 653-665.
    14. Bolea, Irene & Romeo, Luis M. & Pallarés, David, 2012. "The role of external heat exchangers in oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 94(C), pages 215-223.
    15. Wu, Yinghai & Wang, Chunbo & Tan, Yewen & Jia, Lufei & Anthony, Edward J., 2011. "Characterization of ashes from a 100kWth pilot-scale circulating fluidized bed with oxy-fuel combustion," Applied Energy, Elsevier, vol. 88(9), pages 2940-2948.
    16. Hu, Yukun & Yan, Jinyue, 2012. "Characterization of flue gas in oxy-coal combustion processes for CO2 capture," Applied Energy, Elsevier, vol. 90(1), pages 113-121.
    17. Granados, D.A. & Chejne, F. & Mejía, J.M., 2015. "Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns," Applied Energy, Elsevier, vol. 158(C), pages 107-117.
    18. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor," Applied Energy, Elsevier, vol. 91(1), pages 67-74.
    19. Li, H. & Yan, J. & Yan, J. & Anheden, M., 2009. "Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system," Applied Energy, Elsevier, vol. 86(2), pages 202-213, February.
    20. Arias, B. & Criado, Y.A. & Sanchez-Biezma, A. & Abanades, J.C., 2014. "Oxy-fired fluidized bed combustors with a flexible power output using circulating solids for thermal energy storage," Applied Energy, Elsevier, vol. 132(C), pages 127-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gürel, Barış & Kurtuluş, Karani & Yurdakul, Sema & Karaca Dolgun, Gülşah & Akman, Remzi & Önür, Muhammet Enes & Varol, Murat & Keçebaş, Ali & Gürbüz, Habib, 2024. "Combustion of chicken manure and Turkish lignite mixtures in a circulating fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei, 2017. "Reduction of recycled NO over char during oxy-fuel fluidized bed combustion: Effects of operating parameters," Applied Energy, Elsevier, vol. 199(C), pages 310-322.
    3. Engin, Berrin & Kayahan, Ufuk & Atakül, Hüsnü, 2020. "A comparative study on the air, the oxygen-enriched air and the oxy-fuel combustion of lignites in CFB," Energy, Elsevier, vol. 196(C).
    4. Zhao, Yijun & Feng, Dongdong & Li, Bowen & Wang, Pengxiang & Tan, Heping & Sun, Shaozeng, 2019. "Effects of flue gases (CO/CO2/SO2/H2O/O2) on NO-Char interaction at high temperatures," Energy, Elsevier, vol. 174(C), pages 519-525.
    5. Wu, Hai-bo & Xu, Ming-xin & Li, Yan-bing & Wu, Jin-hua & Shen, Jian-chong & Liao, Haiyan, 2020. "Experimental research on the process of compression and purification of CO2 in oxy-fuel combustion," Applied Energy, Elsevier, vol. 259(C).
    6. Zhang, Hai & Luo, Lei & Liu, Jiaxun & Jiao, Anyao & Liu, Jianguo & Jiang, Xiumin, 2019. "Theoretical study on the reduction reactions from solid char(N): The effect of the nearby group and the high-spin state," Energy, Elsevier, vol. 189(C).
    7. Wang, Pengqian & Wang, Chang'an & Yuan, Maobo & Wang, Chaowei & Zhang, Jinping & Du, Yongbo & Tao, Zichen & Che, Defu, 2020. "Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere," Applied Energy, Elsevier, vol. 260(C).
    8. Gürel, Barış & Kurtuluş, Karani & Yurdakul, Sema & Varol, Murat & Keçebaş, Ali & Gürbüz, Habib, 2023. "Numerical and experimental investigation of co-combustion of chicken manure and lignite blends in a CFBB with novel compact combustion chamber," Energy, Elsevier, vol. 285(C).
    9. Chen, Zhichao & Qiao, Yanyu & Guan, Shuo & Wang, Zhenwang & Zheng, Yu & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of inner and outer secondary air ratios on ignition, C and N conversion process of pulverized coal in swirl burner under sub-stoichiometric ratio," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    2. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei, 2017. "Reduction of recycled NO over char during oxy-fuel fluidized bed combustion: Effects of operating parameters," Applied Energy, Elsevier, vol. 199(C), pages 310-322.
    3. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    4. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.
    5. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    6. Wu, Hai-bo & Xu, Ming-xin & Li, Yan-bing & Wu, Jin-hua & Shen, Jian-chong & Liao, Haiyan, 2020. "Experimental research on the process of compression and purification of CO2 in oxy-fuel combustion," Applied Energy, Elsevier, vol. 259(C).
    7. Seddighi, Sadegh & Clough, Peter T. & Anthony, Edward J. & Hughes, Robin W. & Lu, Ping, 2018. "Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds," Applied Energy, Elsevier, vol. 232(C), pages 527-542.
    8. Singh, Ravi Inder & Kumar, Rajesh, 2016. "Current status and experimental investigation of oxy-fired fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 398-420.
    9. Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
    10. Duan, Lunbo & Jiang, Zhongxiao & Chen, Xiaoping & Zhao, Changsui, 2013. "Investigation on water vapor effect on direct sulfation during wet-recycle oxy-coal combustion," Applied Energy, Elsevier, vol. 108(C), pages 121-127.
    11. Álvarez, L. & Gharebaghi, M. & Jones, J.M. & Pourkashanian, M. & Williams, A. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release," Applied Energy, Elsevier, vol. 104(C), pages 653-665.
    12. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    13. Bu, Changsheng & Liu, Daoyin & Chen, Xiaoping & Pallarès, David & Gómez-Barea, Alberto, 2014. "Ignition behavior of single coal particle in a fluidized bed under O2/CO2 and O2/N2 atmospheres: A combination of visual image and particle temperature," Applied Energy, Elsevier, vol. 115(C), pages 301-308.
    14. Wu, Zhijun & Kang, Zhe & Deng, Jun & Hu, Zongjie & Li, Liguang, 2016. "Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine," Applied Energy, Elsevier, vol. 184(C), pages 594-604.
    15. Wang, B. & Sun, L.S. & Su, S. & Xiang, J. & Hu, S. & Fei, H., 2012. "A kinetic study of NO formation during oxy-fuel combustion of pyridine," Applied Energy, Elsevier, vol. 92(C), pages 361-368.
    16. Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
    17. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    18. Oboirien, B.O. & Thulari, V. & North, B.C., 2014. "Major and trace elements in coal bottom ash at different oxy coal combustion conditions," Applied Energy, Elsevier, vol. 129(C), pages 207-216.
    19. Bu, Changsheng & Gómez-Barea, Alberto & Chen, Xiaoping & Leckner, Bo & Liu, Daoyin & Pallarès, David & Lu, Ping, 2016. "Effect of CO2 on oxy-fuel combustion of coal-char particles in a fluidized bed: Modeling and comparison with the conventional mode of combustion," Applied Energy, Elsevier, vol. 177(C), pages 247-259.
    20. Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:553-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.