IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics0360544219325587.html
   My bibliography  Save this article

The influence of particle packing density on wood combustion in a fixed bed under oxy-fuel conditions

Author

Listed:
  • Tanui, J.K.
  • Kioni, P.N.
  • Mirre, T.
  • Nowitzki, M.
  • Karuri, N.W.

Abstract

Presented in this paper is a study of the influence of particle packing density on fixed bed combustion of wood in an oxy-fuel burning environment. The packing density, which determines the region porosity, is influenced by fuels’ geometry. Size and shape were determined directly from fuel particles and used to evaluate the particle sphericity which is an input in the computational model. Euler-Lagrange method was used to model conversion of wood in a fixed bed. The computational model was validated by performing experiments in a fixed bed using wood of different shapes and sizes which formed a wide range of bed porosity. It was established that the packing density affects combustion process by changing the burning conditions and flammability limits. The combustion condition is shifted from fuel-rich to fuel-lean side as bed porosity is increased. Consequently, the flame front propagation speed and conversion rates increase while the ignition time reduces. The operational range with respect to porosity was decreased in an oxy-fuel burning condition due to higher quenching effects of CO2. Furthermore, the study revealed that there is an optimum packing density, χ = 0.71, beyond which the efficiency falls due to the onset of quenching in the spaces.

Suggested Citation

  • Tanui, J.K. & Kioni, P.N. & Mirre, T. & Nowitzki, M. & Karuri, N.W., 2020. "The influence of particle packing density on wood combustion in a fixed bed under oxy-fuel conditions," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325587
    DOI: 10.1016/j.energy.2019.116863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219325587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Williams, Orla & Newbolt, Gary & Eastwick, Carol & Kingman, Sam & Giddings, Donald & Lormor, Stephen & Lester, Edward, 2016. "Influence of mill type on densified biomass comminution," Applied Energy, Elsevier, vol. 182(C), pages 219-231.
    2. Chen, Wei & Annamalai, Kalyan & Ansley, R. James & Mirik, Mustafa, 2012. "Updraft fixed bed gasification of mesquite and juniper wood samples," Energy, Elsevier, vol. 41(1), pages 454-461.
    3. Riaza, J. & Gil, M.V. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion of coal and biomass blends," Energy, Elsevier, vol. 41(1), pages 429-435.
    4. Khodaei, Hassan & Al-Abdeli, Yasir M. & Guzzomi, Ferdinando & Yeoh, Guan H., 2015. "An overview of processes and considerations in the modelling of fixed-bed biomass combustion," Energy, Elsevier, vol. 88(C), pages 946-972.
    5. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres," Energy, Elsevier, vol. 48(1), pages 510-518.
    6. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
    7. Yahaya, Ahmad Zubair & Somalu, Mahendra Rao & Muchtar, Andanastuti & Sulaiman, Shaharin Anwar & Wan Daud, Wan Ramli, 2019. "Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor," Energy, Elsevier, vol. 175(C), pages 931-940.
    8. Costa, M. & Massarotti, N. & Indrizzi, V. & Rajh, B. & Yin, C. & Samec, N., 2014. "Engineering bed models for solid fuel conversion process in grate-fired boilers," Energy, Elsevier, vol. 77(C), pages 244-253.
    9. Guo, Feiqiang & Li, Xiaolei & Wang, Yan & Liu, Yuan & Li, Tiantao & Guo, Chenglong, 2017. "Characterization of Zhundong lignite and biomass co-pyrolysis in a thermogravimetric analyzer and a fixed bed reactor," Energy, Elsevier, vol. 141(C), pages 2154-2163.
    10. Ábrego, J. & Atienza-Martínez, M. & Plou, F. & Arauzo, J., 2019. "Heat requirement for fixed bed pyrolysis of beechwood chips," Energy, Elsevier, vol. 178(C), pages 145-157.
    11. Plis, P. & Wilk, R.K., 2011. "Theoretical and experimental investigation of biomass gasification process in a fixed bed gasifier," Energy, Elsevier, vol. 36(6), pages 3838-3845.
    12. Gil, María V. & Riaza, Juan & Álvarez, Lucía & Pevida, Covadonga & Rubiera, Fernando, 2015. "Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity," Energy, Elsevier, vol. 91(C), pages 655-662.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuznetsov, G.V. & Syrodoy, S.V. & Borisov, B.V. & Kostoreva, Zh.A. & Gutareva, N. Yu & Kostoreva, A.A., 2023. "Influence of homeomorphism of the surface of a wood particle on the characteristics of its ignition," Renewable Energy, Elsevier, vol. 203(C), pages 828-840.
    2. Kipngetich, P. & Kiplimo, R. & Tanui, J.K. & Chisale, P.C., 2022. "Optimization of combustion parameters of carbonized rice husk briquettes in a fixed bed using RSM technique," Renewable Energy, Elsevier, vol. 198(C), pages 61-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mortari, Daniela A. & Pereira, Fernando M. & Crnkovic, Paula M., 2020. "Experimental investigation of the carbon dioxide effect on the devolatilization and combustion of a coal and sugarcane bagasse," Energy, Elsevier, vol. 204(C).
    2. Meng, Xiaoxiao & Zhou, Wei & Yan, Yonghong & Ren, Xiaohan & Ismail, Tamer M. & Sun, Rui, 2020. "Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed," Energy, Elsevier, vol. 210(C).
    3. Zachl, A. & Soria-Verdugo, A. & Buchmayr, M. & Gruber, J. & Anca-Couce, A. & Scharler, R. & Hochenauer, C., 2022. "Stratified downdraft gasification of wood chips with a significant bark content," Energy, Elsevier, vol. 261(PB).
    4. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    5. Zhou, Kun & Lin, Qizhao & Hu, Hongwei & Hu, Huiqing & Song, Lanbo, 2017. "The ignition characteristics and combustion processes of the single coal slime particle under different hot-coflow conditions in N2/O2 atmosphere," Energy, Elsevier, vol. 136(C), pages 173-184.
    6. Wang, Chaowei & Wang, Chang'an & Feng, Qinqin & Mao, Qisen & Gao, Xinyue & Du, Yongbo & Li, Guangyu & Che, Defu, 2022. "Experimental evaluation on NOx formation and burnout characteristics of oxy-fuel co-combustion of ultra-low volatile carbon-based solid fuels and bituminous coal," Energy, Elsevier, vol. 248(C).
    7. Mostafa, Mohamed E. & He, Limo & Xu, Jun & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "Investigating the effect of integrated CO2 and H2O on the reactivity and kinetics of biomass pellets oxy-steam combustion using new double parallel volumetric model (DVM)," Energy, Elsevier, vol. 179(C), pages 343-357.
    8. Gil, María V. & Riaza, Juan & Álvarez, Lucía & Pevida, Covadonga & Rubiera, Fernando, 2015. "Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity," Energy, Elsevier, vol. 91(C), pages 655-662.
    9. Gai, Chao & Dong, Yuping & Zhang, Tonghui, 2014. "Distribution of sulfur species in gaseous and condensed phase during downdraft gasification of corn straw," Energy, Elsevier, vol. 64(C), pages 248-258.
    10. López, R. & Fernández, C. & Fierro, J. & Cara, J. & Martínez, O. & Sánchez, M.E., 2014. "Oxy-combustion of corn, sunflower, rape and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis," Energy, Elsevier, vol. 74(C), pages 845-854.
    11. Wang, Guangwei & Zhang, Jianliang & Shao, Jiugang & Liu, Zhengjian & Wang, Haiyang & Li, Xinyu & Zhang, Pengcheng & Geng, Weiwei & Zhang, Guohua, 2016. "Experimental and modeling studies on CO2 gasification of biomass chars," Energy, Elsevier, vol. 114(C), pages 143-154.
    12. Garbacz, Przemysław & Wejkowski, Robert, 2020. "Numerical research on the SNCR method in a grate boiler equipped with the innovative FJBS system," Energy, Elsevier, vol. 207(C).
    13. Granados, David A. & Chejne, Farid & Mejía, Juan M. & Gómez, Carlos A. & Berrío, Ariel & Jurado, William J., 2014. "Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln," Energy, Elsevier, vol. 64(C), pages 615-625.
    14. Zhang, Zihang & Yi, Baojun & Sun, Zhengshuai & Zhang, Qi & Feng, He & Hu, Hongyun & Huang, Xiangguo & Zhao, Chunqing, 2021. "Reaction process and characteristics for coal char gasification under changed CO2/H2O atmosphere in various reaction stages," Energy, Elsevier, vol. 229(C).
    15. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    16. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Moon, Hyeong-Bin & Lee, Ji-Hwan & Kim, Hyung-Tae & Lee, Jin-Wook & Lee, Byoung-Hwa & Jeon, Chung-Hwan, 2024. "Effect of high-pressure pyrolysis on syngas and char structure of petroleum coke," Energy, Elsevier, vol. 299(C).
    18. Díez, Luis I. & García-Mariaca, Alexander & Canalís, Paula & Llera, Eva, 2023. "Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 284(C).
    19. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.