IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp92-97.html
   My bibliography  Save this article

Co-gasification reactivity and synergy of banana residue hydrochar and anthracite coal blends

Author

Listed:
  • Mosqueda, Alexander
  • Wei, Juntao
  • Medrano, Katleya
  • Gonzales, Hazel
  • Ding, Lu
  • Yu, Guangsuo
  • Yoshikawa, Kunio

Abstract

This work investigated the influence of biomass hydrothermal treatment (HT) on co-gasification reactivity and synergy of anthracite coal and banana residue hydrochar (HTC) prepared at varying HT temperatures (180 °C, 200 °C and 220 °C). In addition, the effect of HTC char on chemical structure evolution of coal char in co-gasification process was studied to correlate the co-gasification synergy. The results revealed that the co-gasification reactivity of the blended chars was enhanced with decreasing HT temperature. Moreover, the differences in synergistic effect on co-gasification reactivity was greatly influenced by HT temperature, and a more pronounced synergistic effect was achieved at the lowest HT temperature (180 °C). This phenomenon could be well explained by the chemical structure variations of coal char during co-gasification. Active AAEM contained in HTC char showed positive effect on the chemical structure evolution of coal char, specifically on the decrease in the order degree of carbon structure as well as increase in the amount of amorphous carbon structure of coal char; furthermore, this positive effect was weakened as HT temperature increased, being more evident for HT temperature of 180 °C than 200 °C and 220 °C. The findings in this work would be useful in revealing the co-gasification synergy mechanism of biomass hydrochar and coal blends, and may provide valuable information on the relevance of HT to industrial-scale gasification systems.

Suggested Citation

  • Mosqueda, Alexander & Wei, Juntao & Medrano, Katleya & Gonzales, Hazel & Ding, Lu & Yu, Guangsuo & Yoshikawa, Kunio, 2019. "Co-gasification reactivity and synergy of banana residue hydrochar and anthracite coal blends," Applied Energy, Elsevier, vol. 250(C), pages 92-97.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:92-97
    DOI: 10.1016/j.apenergy.2019.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919308621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    2. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko, 2015. "From fossil fuels towards renewables: Inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels," Applied Energy, Elsevier, vol. 140(C), pages 196-209.
    3. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    4. Ding, Lu & Gong, Yan & Wang, Yifei & Wang, Fuchen & Yu, Guangsuo, 2017. "Characterisation of the morphological changes and interactions in char, slag and ash during CO2 gasification of rice straw and lignite," Applied Energy, Elsevier, vol. 195(C), pages 713-724.
    5. Gil, María V. & Riaza, Juan & Álvarez, Lucía & Pevida, Covadonga & Rubiera, Fernando, 2015. "Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity," Energy, Elsevier, vol. 91(C), pages 655-662.
    6. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Lixiao & Dan, Xie & Cui, Xinyu & Guo, Yang, 2023. "A novel biotar-derived porous carbon supported Ru catalyst for hydrogen production from supercritical water gasification of glycerol," Renewable Energy, Elsevier, vol. 212(C), pages 921-927.
    2. Ma, Meng & Wang, Jiaofei & Bai, Yonghui & Lv, Peng & Song, Xudong & Su, Weiguang & Wei, Juntao & Yu, Guangsuo, 2022. "Decoupling of volatile–char interaction in co-pyrolysis of cow manure and bituminous coal and deactivation mechanism of coal char reactivity," Energy, Elsevier, vol. 251(C).
    3. Wang, Pengqian & Wang, Chang'an & Yuan, Maobo & Wang, Chaowei & Zhang, Jinping & Du, Yongbo & Tao, Zichen & Che, Defu, 2020. "Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
    2. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.
    3. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    4. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.
    5. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
    6. Li, Jie & Chang, Guozhang & Song, Ke & Hao, Bolun & Wang, Cuiping & Zhang, Jian & Yue, Guangxi & Hu, Shugang, 2023. "Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity," Renewable Energy, Elsevier, vol. 203(C), pages 434-444.
    7. Zhang, Hongmei & Chen, Zhengjie & Ma, Wenhui & Cao, Shijie, 2022. "Effect of the reactive blend conditions on the thermal properties of waste biomass and soft coal as a reducing agent for silicon production," Renewable Energy, Elsevier, vol. 187(C), pages 302-319.
    8. Qi, Renzhi & Xu, Zhihua & Zhou, Yuwei & Zhang, Daofang & Sun, Zhenhua & Chen, Weifang & Xiong, Mengmeng, 2021. "Clean solid fuel produced from cotton textiles waste through hydrothermal carbonization with FeCl3: Upgrading the fuel quality and combustion characteristics," Energy, Elsevier, vol. 214(C).
    9. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Anupam, Kumar & Sharma, Arvind Kumar & Lal, Priti Shivhare & Dutta, Suman & Maity, Sudip, 2016. "Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding," Energy, Elsevier, vol. 106(C), pages 743-756.
    11. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    12. Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).
    13. Liu, Yali & Zhai, Yunbo & Li, Shanhong & Liu, Xiangmin & Liu, Xiaoping & Wang, Bei & Qiu, Zhenzi & Li, Caiting, 2020. "Production of bio-oil with low oxygen and nitrogen contents by combined hydrothermal pretreatment and pyrolysis of sewage sludge," Energy, Elsevier, vol. 203(C).
    14. Lin, Yousheng & Hu, Zhifeng & Ge, Ya & Xiao, Hanmin & Zhang, Gang & He, Qing, 2023. "Chemical looping with oxygen uncoupling of biomass-derived hydrochar with Cu-based oxygen carriers modified by alkaline earth metals," Energy, Elsevier, vol. 280(C).
    15. René A. Garrido & Camila Lagos & Carolina Luna & Jaime Sánchez & Georgina Díaz, 2021. "Study of the Potential Uses of Hydrochar from Grape Pomace and Walnut Shells Generated from Hydrothermal Carbonization as an Alternative for the Revalorization of Agri-Waste in Chile," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
    16. Zhang, Heng & Li, Junguo & Yang, Xin & Song, Shuangshuang & Wang, Zhiqing & Huang, Jiejie & Zhang, Yongqi & Fang, Yitian, 2020. "Influence of coal ash on CO2 gasification reactivity of corn stalk char," Renewable Energy, Elsevier, vol. 147(P1), pages 2056-2063.
    17. Yu, Xin & Yu, Dunxi & Liu, Fangqi & Han, Jingkun & Wu, Jianqun & Xu, Minghou, 2022. "Synergistic effects, gas evolution and ash interaction during isothermal steam co-gasification of biomass with high-sulfur petroleum coke," Energy, Elsevier, vol. 240(C).
    18. Yan, Mi & Liu, Jianyong & Yoshikawa, Kunio & Jiang, Jiahao & Zhang, Yan & Zhu, Gaojun & Liu, Yu & Hantoko, Dwi, 2022. "Cascading disposal for food waste by integration of hydrothermal carbonization and supercritical water gasification," Renewable Energy, Elsevier, vol. 186(C), pages 914-926.
    19. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    20. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:92-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.