IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v248y2022ics0360544222004819.html
   My bibliography  Save this article

Experimental evaluation on NOx formation and burnout characteristics of oxy-fuel co-combustion of ultra-low volatile carbon-based solid fuels and bituminous coal

Author

Listed:
  • Wang, Chaowei
  • Wang, Chang'an
  • Feng, Qinqin
  • Mao, Qisen
  • Gao, Xinyue
  • Du, Yongbo
  • Li, Guangyu
  • Che, Defu

Abstract

Pyrolyzed semi-coke (SC) powder and gasification residual carbon are usually regarded as solid wastes, which feature high NOx formation amount and inferior burnout performance during burning process. Oxy-fuel co-firing of these ultra-low volatile carbon-based solid fuels (LVFs) with bituminous coal (BC) could reduce the NOx generation and realize the carbon capture to a large extent. However, the NOx formation and burnout features of oxy-fuel co-combustion of BC and LVFs are still unclear. Here, a two-staged drop-tube co-firing experimental system was employed to probe the oxy-fuel co-combustion characteristics of various blends. The experimental results show that the low ash melting temperature of coal-water-slurry gasification residual carbon yields an increase in Cfh with the temperature of burnout zone. The Cfh of BC/SC blend is decreased by 64.3% with the oxygen flow rate of primary air raised from 0.25 to 0.45 L min−1, which is the largest among all blends. The rise of difference between tube lengths in furnace of BC and LVF generates a decrease in NOx formation and an increase in Cfh. The present research could offer guidance for clean and efficient utilization of carbon-based solid wastes using oxy-fuel co-combustion technique, together with the encouraged development of carbon capture technology.

Suggested Citation

  • Wang, Chaowei & Wang, Chang'an & Feng, Qinqin & Mao, Qisen & Gao, Xinyue & Du, Yongbo & Li, Guangyu & Che, Defu, 2022. "Experimental evaluation on NOx formation and burnout characteristics of oxy-fuel co-combustion of ultra-low volatile carbon-based solid fuels and bituminous coal," Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004819
    DOI: 10.1016/j.energy.2022.123578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yijun & Feng, Dongdong & Li, Bowen & Wang, Pengxiang & Tan, Heping & Sun, Shaozeng, 2019. "Effects of flue gases (CO/CO2/SO2/H2O/O2) on NO-Char interaction at high temperatures," Energy, Elsevier, vol. 174(C), pages 519-525.
    2. Xu, Yishu & Liu, Xiaowei & Zhou, Zijian & Sheng, Lei & Wang, Chao & Xu, Minghou, 2014. "The role of steam in silica vaporization and ultrafine particulate matter formation during wet oxy-coal combustion," Applied Energy, Elsevier, vol. 133(C), pages 144-151.
    3. Gładysz, Paweł & Stanek, Wojciech & Czarnowska, Lucyna & Sładek, Sławomir & Szlęk, Andrzej, 2018. "Thermo-ecological evaluation of an integrated MILD oxy-fuel combustion power plant with CO2 capture, utilisation, and storage – A case study in Poland," Energy, Elsevier, vol. 144(C), pages 379-392.
    4. Riaza, J. & Gil, M.V. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion of coal and biomass blends," Energy, Elsevier, vol. 41(1), pages 429-435.
    5. Yang, Yu & Wang, Quanhai & Lu, Xiaofeng & Li, Jianbo & Liu, Zhuo, 2018. "Combustion behaviors and pollutant emission characteristics of low calorific oil shale and its semi-coke in a lab-scale fluidized bed combustor," Applied Energy, Elsevier, vol. 211(C), pages 631-638.
    6. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres," Energy, Elsevier, vol. 48(1), pages 510-518.
    7. Tuo Liu & Bo Xu & Xin Zheng & Yirui Deng & Wei Zhang, 2021. "The Impact Mechanism and Scenario Simulation of Energy Internet on Transition," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-11, April.
    8. Smoliński, Adam & Howaniec, Natalia & Gąsior, Rafał & Polański, Jarosław & Magdziarczyk, Małgorzata, 2021. "Hydrogen rich gas production through co-gasification of low rank coal, flotation concentrates and municipal refuse derived fuel," Energy, Elsevier, vol. 235(C).
    9. Wang, Pengqian & Wang, Chang'an & Yuan, Maobo & Wang, Chaowei & Zhang, Jinping & Du, Yongbo & Tao, Zichen & Che, Defu, 2020. "Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere," Applied Energy, Elsevier, vol. 260(C).
    10. Engin, Berrin & Kayahan, Ufuk & Atakül, Hüsnü, 2020. "A comparative study on the air, the oxygen-enriched air and the oxy-fuel combustion of lignites in CFB," Energy, Elsevier, vol. 196(C).
    11. Pawlak-Kruczek, Halina & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Zgóra, Jacek, 2015. "Examinations of the process of hard coal and biomass blend combustion in OEA (oxygen enriched atmosphere)," Energy, Elsevier, vol. 92(P1), pages 40-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Fan & Xiong, Biao & Liu, Xuhui & Huang, Xiaohong & Li, Yu & Liu, Zhaohui, 2023. "Optimized TGA-based experimental method for studying intrinsic kinetics of coal char oxidation under moderate or intense low-oxygen dilution oxy-fuel conditions," Energy, Elsevier, vol. 265(C).
    2. Wang, Chaowei & Wang, Chang'an & Luo, Maoyun & Zhao, Lin & Wang, Pengqian & Hou, Yujie & Zhao, Pengbo & Che, Defu, 2023. "Co-gasification behaviors of various coal-based solid fuels blends at initial stage of oxy-fuel Co-combustion," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chang'an & Zhao, Lin & Sun, Ruijin & Zhou, Lei & Jin, Liyan & Che, Defu, 2022. "Experimental study on NO emission and ash deposition during oxy-fuel combustion of high-alkali coal under oxygen-staged conditions," Energy, Elsevier, vol. 251(C).
    2. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    3. Tanui, J.K. & Kioni, P.N. & Mirre, T. & Nowitzki, M. & Karuri, N.W., 2020. "The influence of particle packing density on wood combustion in a fixed bed under oxy-fuel conditions," Energy, Elsevier, vol. 194(C).
    4. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    5. Wang, Chaowei & Wang, Chang'an & Luo, Maoyun & Zhao, Lin & Wang, Pengqian & Hou, Yujie & Zhao, Pengbo & Che, Defu, 2023. "Co-gasification behaviors of various coal-based solid fuels blends at initial stage of oxy-fuel Co-combustion," Energy, Elsevier, vol. 271(C).
    6. Zhou, Kun & Lin, Qizhao & Hu, Hongwei & Hu, Huiqing & Song, Lanbo, 2017. "The ignition characteristics and combustion processes of the single coal slime particle under different hot-coflow conditions in N2/O2 atmosphere," Energy, Elsevier, vol. 136(C), pages 173-184.
    7. Mostafa, Mohamed E. & He, Limo & Xu, Jun & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "Investigating the effect of integrated CO2 and H2O on the reactivity and kinetics of biomass pellets oxy-steam combustion using new double parallel volumetric model (DVM)," Energy, Elsevier, vol. 179(C), pages 343-357.
    8. Gil, María V. & Riaza, Juan & Álvarez, Lucía & Pevida, Covadonga & Rubiera, Fernando, 2015. "Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity," Energy, Elsevier, vol. 91(C), pages 655-662.
    9. Betancur, Yuli & López, Diana & Feng, Jie & Du, Zhen-Yi & Li, Wen-Ying, 2021. "Influence of potassium carbonate catalysis and pre-treatment atmosphere on the textural, structural, and chemical properties of high and low rank coals blended with biomass and their reactivity under ," Energy, Elsevier, vol. 220(C).
    10. López, R. & Fernández, C. & Fierro, J. & Cara, J. & Martínez, O. & Sánchez, M.E., 2014. "Oxy-combustion of corn, sunflower, rape and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis," Energy, Elsevier, vol. 74(C), pages 845-854.
    11. Granados, David A. & Chejne, Farid & Mejía, Juan M. & Gómez, Carlos A. & Berrío, Ariel & Jurado, William J., 2014. "Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln," Energy, Elsevier, vol. 64(C), pages 615-625.
    12. Liu, Zhuo & Li, Jianbo & Long, Xiaofei & Lu, Xiaofeng, 2022. "Mechanisms and characteristics of ash layer formation on bed particles during circulating fluidized bed combustion of Zhundong lignite," Energy, Elsevier, vol. 245(C).
    13. Wang, Pengqian & Bai, Bo & Wang, Chang'an & Du, Yongbo & Wang, Chaowei & Che, Defu, 2023. "Experimental and kinetics study of NO heterogeneous reduction on semi-coke and its chars: Effects of high-temperature rapid pyrolysis and atmosphere," Energy, Elsevier, vol. 264(C).
    14. Díez, Luis I. & García-Mariaca, Alexander & Canalís, Paula & Llera, Eva, 2023. "Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 284(C).
    15. Zhan, Honglei & Qin, Fankai & Chen, Sitong & Chen, Ru & Meng, Zhaohui & Miao, Xinyang & Zhao, Kun, 2022. "Two-step pyrolysis degradation mechanism of oil shale through comprehensive analysis of pyrolysis semi-cokes and pyrolytic gases," Energy, Elsevier, vol. 241(C).
    16. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    17. Zhao, Jun & Mangi, Hassan Nasir & Zhang, Zhenyue & Chi, Ru'an & Zhang, Haochen & Xian, Mengyu & Liu, Hong & Zuo, Haibin & Wang, Guangwei & Xu, Zhigao & Wu, Ming, 2022. "The structural characteristics and gasification performance of cokes of modified coal extracted from the mixture of low-rank coal and biomass," Energy, Elsevier, vol. 258(C).
    18. Smoliński, Adam & Howaniec, Natalia, 2023. "Experimental investigation and chemometric analysis of gasification and co-gasification of olive pomace and Sida Hermaphrodita blends with sewage sludge to hydrogen-rich gas," Energy, Elsevier, vol. 284(C).
    19. Mortari, Daniela A. & Pereira, Fernando M. & Crnkovic, Paula M., 2020. "Experimental investigation of the carbon dioxide effect on the devolatilization and combustion of a coal and sugarcane bagasse," Energy, Elsevier, vol. 204(C).
    20. Jafari, Hamed & Safarzadeh, Soroush & Azad-Farsani, Ehsan, 2022. "Effects of governmental policies on energy-efficiency improvement of hydrogen fuel cell cars: A game-theoretic approach," Energy, Elsevier, vol. 254(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.