IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp142-150.html
   My bibliography  Save this article

A role of steam activation on CO2 capture and separation of narrow microporous carbons produced from cellulose fibers

Author

Listed:
  • Heo, Young-Jung
  • Park, Soo-Jin

Abstract

Ultra-microporous carbons were prepared from CF (cellulose fibers) by physical activation at various temperatures. Physical activation using steam was observed to have an influence on the development of new pores and the expansion of pore sizes and to be effective in developing optimal micropores for CO2 adsorption on the carbon surface. On optimizing the preparation conditions, the synthesized materials exhibited a high CO2 adsorption capacity of 3.776 mmol g−1 at 298 K and 1 bar, as well as an impressive CO2/N2 selectivity of 47.1. The prepared samples show excellent regeneration property throughout 10 adsorption–desorption cycles. These results demonstrate the successful fabrication of porous carbons with enhanced CO2 adsorption capacities and CO2/N2 separation abilities without chemical activation.

Suggested Citation

  • Heo, Young-Jung & Park, Soo-Jin, 2015. "A role of steam activation on CO2 capture and separation of narrow microporous carbons produced from cellulose fibers," Energy, Elsevier, vol. 91(C), pages 142-150.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:142-150
    DOI: 10.1016/j.energy.2015.08.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421501107X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    2. Cheung, Ocean & Bacsik, Zoltán & Liu, Qingling & Mace, Amber & Hedin, Niklas, 2013. "Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA," Applied Energy, Elsevier, vol. 112(C), pages 1326-1336.
    3. Tan, Y.L. & Islam, Md. Azharul & Asif, M. & Hameed, B.H., 2014. "Adsorption of carbon dioxide by sodium hydroxide-modified granular coconut shell activated carbon in a fixed bed," Energy, Elsevier, vol. 77(C), pages 926-931.
    4. Li, Kaimin & Jiang, Jianguo & Yan, Feng & Tian, Sicong & Chen, Xuejing, 2014. "The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents," Applied Energy, Elsevier, vol. 136(C), pages 750-755.
    5. John P. Smol, 2012. "Climate Change: A planet in flux," Nature, Nature, vol. 483(7387), pages 12-15, March.
    6. Rashidi, Nor Adilla & Yusup, Suzana & Hameed, Bassim H., 2013. "Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon," Energy, Elsevier, vol. 61(C), pages 440-446.
    7. Plaza, M.G. & González, A.S. & Pis, J.J. & Rubiera, F. & Pevida, C., 2014. "Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture," Applied Energy, Elsevier, vol. 114(C), pages 551-562.
    8. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mukhtar, Ahmad & Ullah, Sami & Inayat, Abrar & Saqib, Sidra & Mellon, Nurhayati Binti & Assiri, Mohammed Ali & Al-Sehemi, Abdullah G. & Khan Niazi, Muhammad Bilal & Jahan, Zaib & Bustam, Mohamad Azmi , 2021. "Synthesis-structure-property relationship of nitrogen-doped porous covalent triazine frameworks for pre-combustion CO2 capture," Energy, Elsevier, vol. 216(C).
    2. Xue‐Fei Wang & Long Xiong & Li Li & Jun‐Jun Zhong, 2020. "Effect of heat treatment temperature on CO2 capture of nitrogen‐enriched porous carbon fibers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 461-471, April.
    3. Park, Jaewoo & Attia, Nour F. & Jung, Minji & Lee, Myoung Eun & Lee, Kiyoung & Chung, Jaewoo & Oh, Hyunchul, 2018. "Sustainable nanoporous carbon for CO2, CH4, N2, H2 adsorption and CO2/CH4 and CO2/N2 separation," Energy, Elsevier, vol. 158(C), pages 9-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2017. "Recent advances in functionalized composite solid materials for carbon dioxide capture," Energy, Elsevier, vol. 124(C), pages 461-480.
    2. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    3. Huang, Yu-Fong & Chiueh, Pei-Te & Shih, Chun-Hao & Lo, Shang-Lien & Sun, Liping & Zhong, Yuan & Qiu, Chunsheng, 2015. "Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture," Energy, Elsevier, vol. 84(C), pages 75-82.
    4. A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
    5. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    6. Chao, Cong & Deng, Yimin & Dewil, Raf & Baeyens, Jan & Fan, Xianfeng, 2021. "Post-combustion carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
    8. Zhang, Wenbin & Liu, Hao & Sun, Yuan & Cakstins, Janis & Sun, Chenggong & Snape, Colin E., 2016. "Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture," Applied Energy, Elsevier, vol. 168(C), pages 394-405.
    9. Wang, Mei & Yao, Liwen & Wang, Jitong & Zhang, Zixiao & Qiao, Wenming & Long, Donghui & Ling, Licheng, 2016. "Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 168(C), pages 282-290.
    10. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    11. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    12. Cormos, Calin-Cristian, 2014. "Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle," Energy, Elsevier, vol. 78(C), pages 665-673.
    13. Mara Madaleno & Victor Moutinho & Jorge Mota, 2015. "Time Relationships among Electricity and Fossil Fuel Prices: Industry and Households in Europe," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 525-533.
    14. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    15. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    16. Jung, Wonho & Park, Junhyung & Won, Wangyun & Lee, Kwang Soon, 2018. "Simulated moving bed adsorption process based on a polyethylenimine-silica sorbent for CO2 capture with sensible heat recovery," Energy, Elsevier, vol. 150(C), pages 950-964.
    17. Ming Meng & Lixue Wang & Qu Chen, 2018. "Quota Allocation for Carbon Emissions in China’s Electric Power Industry Based Upon the Fairness Principle," Energies, MDPI, vol. 11(9), pages 1-16, August.
    18. Ho, Leong Chuan & Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 63(C), pages 252-259.
    19. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    20. Wawrzyńczak, Dariusz & Panowski, Marcin & Majchrzak-Kucęba, Izabela, 2019. "Possibilities of CO2 purification coming from oxy-combustion for enhanced oil recovery and storage purposes by adsorption method on activated carbon," Energy, Elsevier, vol. 180(C), pages 787-796.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:142-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.