IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp750-755.html
   My bibliography  Save this article

The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents

Author

Listed:
  • Li, Kaimin
  • Jiang, Jianguo
  • Yan, Feng
  • Tian, Sicong
  • Chen, Xuejing

Abstract

Amine–silica adsorbents are considered alternatives to aqueous solutions of amines, which have been traditionally used to capture carbon dioxide (CO2) from flue gas. Among amine–silica adsorbents, polyethyleneimine (PEI)-silica is particularly effective at capturing CO2 from flue gas due to its high thermal stability. In this study, we investigated the influence of PEI type (i.e. branched vs. linear) and molecular weight on the CO2 capture performance of PEI-silica adsorbents. PEI molecular weight influenced the thermal stability of PEI-silica adsorbents; however, when the molecular weight was ⩾1200Da the increase in stability was negligible in the temperature range of 25–160°C. Branched PEIs (BPEIs) achieved higher CO2 saturated sorption capacities compared to linear PEIs (LPEIs); however, LPEIs were more stable than BPEIs during CO2 sorption–desorption cycling. PEI molecular weight also influenced the CO2 saturated sorption capacity; CO2 saturated sorption capacity decreased as PEI molecular weight increased, and among the adsorbents tested in this study BPEI/800-silica had the highest CO2 saturated sorption capacity (202mg CO2/g adsorbent). Both PEI type and molecular weight exhibited influence on the sorption or desorption heat of PEI-silica adsorbents. The CO2 regeneration heat was much lower than that of MEA solution for all PEI-silica adsorbents tested in this study.

Suggested Citation

  • Li, Kaimin & Jiang, Jianguo & Yan, Feng & Tian, Sicong & Chen, Xuejing, 2014. "The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents," Applied Energy, Elsevier, vol. 136(C), pages 750-755.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:750-755
    DOI: 10.1016/j.apenergy.2014.09.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914010058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valverde, Jose M. & Sanchez-Jimenez, Pedro E. & Perejon, Antonio & Perez-Maqueda, Luis A., 2013. "Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions," Applied Energy, Elsevier, vol. 108(C), pages 108-120.
    2. Hedin, Niklas & Andersson, Linnéa & Bergström, Lennart & Yan, Jinyue, 2013. "Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption," Applied Energy, Elsevier, vol. 104(C), pages 418-433.
    3. Akhtar, Farid & Andersson, Linnéa & Keshavarzi, Neda & Bergström, Lennart, 2012. "Colloidal processing and CO2 capture performance of sacrificially templated zeolite monoliths," Applied Energy, Elsevier, vol. 97(C), pages 289-296.
    4. Plaza, M.G. & González, A.S. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications," Applied Energy, Elsevier, vol. 99(C), pages 272-279.
    5. Wang, Weilong & Xiao, Jing & Wei, Xiaolan & Ding, Jing & Wang, Xiaoxing & Song, Chunshan, 2014. "Development of a new clay supported polyethylenimine composite for CO2 capture," Applied Energy, Elsevier, vol. 113(C), pages 334-341.
    6. Plaza, M.G. & González, A.S. & Pis, J.J. & Rubiera, F. & Pevida, C., 2014. "Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture," Applied Energy, Elsevier, vol. 114(C), pages 551-562.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaowen & Liu, Helei & Liang, Zhiwu & Idem, Raphael & Tontiwachwuthikul, Paitoon & Jaber Al-Marri, Mohammed & Benamor, Abdelbaki, 2018. "Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts," Applied Energy, Elsevier, vol. 229(C), pages 562-576.
    2. Wang, Mei & Yao, Liwen & Wang, Jitong & Zhang, Zixiao & Qiao, Wenming & Long, Donghui & Ling, Licheng, 2016. "Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 168(C), pages 282-290.
    3. Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
    4. Zhang, Wenbin & Liu, Hao & Sun, Yuan & Cakstins, Janis & Sun, Chenggong & Snape, Colin E., 2016. "Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture," Applied Energy, Elsevier, vol. 168(C), pages 394-405.
    5. Lai, Qinghua & Diao, Zhijun & Kong, Lingli & Adidharma, Hertanto & Fan, Maohong, 2018. "Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture," Applied Energy, Elsevier, vol. 223(C), pages 293-301.
    6. Xu, Chenhuan & Zhang, Yongmin & Yang, Tianlei & Jia, Xiaohao & Qiu, Feng & Liu, Cenfan & Jiang, Shuai, 2023. "Adsorption mechanisms and regeneration heat analysis of a solid amine sorbent during CO2 capture in wet flue gas," Energy, Elsevier, vol. 284(C).
    7. Li, Xiaoqiang & Ding, Yudong & Guo, Liheng & Liao, Qiang & Zhu, Xun & Wang, Hong, 2019. "Non-aqueous energy-efficient absorbents for CO2 capture based on porous silica nanospheres impregnated with amine," Energy, Elsevier, vol. 171(C), pages 109-119.
    8. Chen, Chao & Xu, Huifang & Jiang, Qingbin & Lin, Zhan, 2021. "Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents," Energy, Elsevier, vol. 214(C).
    9. Lou, Feijian & Zhang, Anfeng & Zhang, Guanghui & Ren, Limin & Guo, Xinwen & Song, Chunshan, 2020. "Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure," Applied Energy, Elsevier, vol. 264(C).
    10. An, Xuefei & Li, Tongxin & Chen, Jiaqi & Fu, Dong, 2023. "3D-hierarchical porous functionalized carbon aerogel from renewable cellulose: An innovative solid-amine adsorbent with high CO2 adsorption performance," Energy, Elsevier, vol. 274(C).
    11. Kong, Yong & Shen, Xiaodong & Cui, Sheng & Fan, Maohong, 2015. "Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture," Applied Energy, Elsevier, vol. 147(C), pages 308-317.
    12. Heo, Young-Jung & Park, Soo-Jin, 2015. "A role of steam activation on CO2 capture and separation of narrow microporous carbons produced from cellulose fibers," Energy, Elsevier, vol. 91(C), pages 142-150.
    13. Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2017. "Recent advances in functionalized composite solid materials for carbon dioxide capture," Energy, Elsevier, vol. 124(C), pages 461-480.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Fengsheng & Lu, Chungsying & Chung, Ai-Ju & Liao, Chien-Hsiang, 2014. "CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption," Applied Energy, Elsevier, vol. 113(C), pages 706-712.
    2. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    3. Guo, Yafei & Zhao, Chuanwen & Chen, Xiaoping & Li, Changhai, 2015. "CO2 capture and sorbent regeneration performances of some wood ash materials," Applied Energy, Elsevier, vol. 137(C), pages 26-36.
    4. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    5. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    6. Huang, Yu-Fong & Chiueh, Pei-Te & Shih, Chun-Hao & Lo, Shang-Lien & Sun, Liping & Zhong, Yuan & Qiu, Chunsheng, 2015. "Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture," Energy, Elsevier, vol. 84(C), pages 75-82.
    7. Ganapathy, H. & Shooshtari, A. & Dessiatoun, S. & Alshehhi, M. & Ohadi, M., 2014. "Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor," Applied Energy, Elsevier, vol. 119(C), pages 43-56.
    8. A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
    9. Wang, Weilong & Li, Jiang & Wei, Xiaolan & Ding, Jing & Feng, Haijun & Yan, Jinyue & Yang, Jianping, 2015. "Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method," Applied Energy, Elsevier, vol. 142(C), pages 221-228.
    10. Guo, Yafei & Zhao, Chuanwen & Li, Changhai & Lu, Shouxiang, 2014. "Application of PEI–K2CO3/AC for capturing CO2 from flue gas after combustion," Applied Energy, Elsevier, vol. 129(C), pages 17-24.
    11. Zhang, Zhonghua & Wang, Baodong & Sun, Qi & Zheng, Lingru, 2014. "A novel method for the preparation of CO2 sorption sorbents with high performance," Applied Energy, Elsevier, vol. 123(C), pages 179-184.
    12. Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2017. "Recent advances in functionalized composite solid materials for carbon dioxide capture," Energy, Elsevier, vol. 124(C), pages 461-480.
    13. Zhao, Chuanwen & Guo, Yafei & Li, Changhai & Lu, Shouxiang, 2014. "Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents," Applied Energy, Elsevier, vol. 124(C), pages 241-247.
    14. Hongyu Zhao & Xiaona Luo & Haijiao Zhang & Nannan Sun & Wei Wei & Yuhan Sun, 2018. "Carbon†based adsorbents for post†combustion capture: a review," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 11-36, February.
    15. Fernando Rubiera & Carlos Córdoba & Tamara Pena & Marta G. Plaza, 2024. "Production of Sustainable Adsorbents for CO 2 Capture Applications from Food Biowastes," Energies, MDPI, vol. 17(5), pages 1-20, March.
    16. Qasem, Naef A.A. & Ben-Mansour, Rached, 2018. "Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation," Applied Energy, Elsevier, vol. 209(C), pages 190-202.
    17. Plaza, M.G. & Durán, I. & Rubiera, F. & Pevida, C., 2015. "CO2 adsorbent pellets produced from pine sawdust: Effect of coal tar pitch addition," Applied Energy, Elsevier, vol. 144(C), pages 182-192.
    18. Myat, Aung & Kim Choon, Ng & Thu, Kyaw & Kim, Young-Deuk, 2013. "Experimental investigation on the optimal performance of Zeolite–water adsorption chiller," Applied Energy, Elsevier, vol. 102(C), pages 582-590.
    19. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    20. Amira Alazmi & Sabina A. Nicolae & Pierpaolo Modugno & Bashir E. Hasanov & Maria M. Titirici & Pedro M. F. J. Costa, 2021. "Activated Carbon from Palm Date Seeds for CO 2 Capture," IJERPH, MDPI, vol. 18(22), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:750-755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.