IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v80y2015icp133-147.html
   My bibliography  Save this article

Single-fuel steam gasification of switchgrass and coal in a bubbling fluidized bed: A comprehensive parametric reference for co-gasification study

Author

Listed:
  • Masnadi, Mohammad S.
  • Grace, John R.
  • Bi, Xiaotao T.
  • Lim, C. Jim
  • Ellis, Naoko
  • Li, Yong Hua
  • Watkinson, A. Paul

Abstract

Recent regulatory sharp curbs on coal power plants have compelled industries to adopt alternative sources of fuels. Biomass/fossil fuel co-gasification could be a pathway through more sustainable energy production technologies. As a basis for co-gasification study, the characteristics of single-fuel switchgrass and coal steam gasification in an atmospheric pilot scale bubbling fluidized bed reactor were studied. Increasing the steam-to-fuel ratio at 860 °C caused a moderate increase in the H2 and CO2 concentrations and decreases in the CO and CH4 concentrations, due to more steam-CH4 reforming and water–gasification reaction of CO. With increasing reactor temperature, the H2 concentration increased, whereas the CO, CH4, and CO2 concentrations fell slightly. Fall switchgrass gasification resulted in higher carbon, hydrogen and cold gas efficiencies than spring harvest gasification, possibly due to higher potassium concentration and hence, greater reactivity of the fall switchgrass. The equilibrium model was unable to predict the syngas composition properly. Adding an extra methanator stoichiometric reactor to produce methane based on the empirical CH4 concentration, and removing part of the carbon, hydrogen and steam before introducing the feed and gas agent streams to the reactor based on experimental carbon, hydrogen, and steam efficiencies, the kinetically modified model predicted the syngas composition accurately.

Suggested Citation

  • Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "Single-fuel steam gasification of switchgrass and coal in a bubbling fluidized bed: A comprehensive parametric reference for co-gasification study," Energy, Elsevier, vol. 80(C), pages 133-147.
  • Handle: RePEc:eee:energy:v:80:y:2015:i:c:p:133-147
    DOI: 10.1016/j.energy.2014.11.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214013097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.11.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko, 2015. "From fossil fuels towards renewables: Inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels," Applied Energy, Elsevier, vol. 140(C), pages 196-209.
    2. Iea, 2013. "21st Century Coal: Advanced Technology and Global Energy Solution," IEA Energy Papers 2013/1, OECD Publishing.
    3. Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
    4. Jin, Gong & Iwaki, Hiroyuki & Arai, Norio & Kitagawa, Kuniyuki, 2005. "Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts," Energy, Elsevier, vol. 30(7), pages 1192-1203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obara, Shin'ya & Morel, Jorge & Okada, Masaki & Kobayashi, Kazuma, 2016. "Study on the load following characteristics of a distributed IGCC for independent microgrid," Energy, Elsevier, vol. 115(P1), pages 13-25.
    2. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Ellis, Naoko & Lim, C. Jim & Butler, James W., 2015. "Biomass/coal steam co-gasification integrated with in-situ CO2 capture," Energy, Elsevier, vol. 83(C), pages 326-336.
    3. Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
    4. Bouraoui, Zeineb & Jeguirim, Mejdi & Guizani, Chamseddine & Limousy, Lionel & Dupont, Capucine & Gadiou, Roger, 2015. "Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity," Energy, Elsevier, vol. 88(C), pages 703-710.
    5. Arroyave, Juan D. & Chejne, Farid & Mejía, Juan M. & Maya, Juan C., 2020. "Evaluation of CO2 production for enhanced oil recovery from four power plants," Energy, Elsevier, vol. 206(C).
    6. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.
    8. Gupta, Saurabh & De, Santanu, 2022. "An experimental investigation of high-ash coal gasification in a pilot-scale bubbling fluidized bed reactor," Energy, Elsevier, vol. 244(PB).
    9. Saebea, Dang & Magistri, Loredana & Massardo, Aristide & Arpornwichanop, Amornchai, 2017. "Cycle analysis of solid oxide fuel cell-gas turbine hybrid systems integrated ethanol steam reformer: Energy management," Energy, Elsevier, vol. 127(C), pages 743-755.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.
    2. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    3. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    4. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    5. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    6. David Bannon & Mirka Deza & Masoud Masoumi & Bahareh Estejab, 2023. "Assessment of Irregular Biomass Particles Fluidization in Bubbling Fluidized Beds," Energies, MDPI, vol. 16(4), pages 1-20, February.
    7. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    9. Ahmed M. Salem & Harnek S. Dhami & Manosh C. Paul, 2022. "Syngas Production and Combined Heat and Power from Scottish Agricultural Waste Gasification—A Computational Study," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    10. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    11. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    12. Carvalho, Lara & Furusjö, Erik & Ma, Chunyan & Ji, Xiaoyan & Lundgren, Joakim & Hedlund, Jonas & Grahn, Mattias & Öhrman, Olov G.W. & Wetterlund, Elisabeth, 2018. "Alkali enhanced biomass gasification with in situ S capture and a novel syngas cleaning. Part 2: Techno-economic assessment," Energy, Elsevier, vol. 165(PB), pages 471-482.
    13. Amiri, Hamed & Sotoodeh, Amir Farhang & Amidpour, Majid, 2021. "A new combined heating and power system driven by biomass for total-site utility applications," Renewable Energy, Elsevier, vol. 163(C), pages 1138-1152.
    14. Carlos Vargas-Salgado & Elías Hurtado-Pérez & David Alfonso-Solar & Anders Malmquist, 2021. "Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    15. Rawan Hakawati & Beatrice Smyth & Helen Daly & Geoffrey McCullough & David Rooney, 2019. "Is the Fischer-Tropsch Conversion of Biogas-Derived Syngas to Liquid Fuels Feasible at Atmospheric Pressure?," Energies, MDPI, vol. 12(6), pages 1-28, March.
    16. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.
    17. Grimalt-Alemany, Antonio & Asimakopoulos, Konstantinos & Skiadas, Ioannis V. & Gavala, Hariklia N., 2020. "Modeling of syngas biomethanation and catabolic route control in mesophilic and thermophilic mixed microbial consortia," Applied Energy, Elsevier, vol. 262(C).
    18. Sara Maen Asaad & Abrar Inayat & Lisandra Rocha-Meneses & Farrukh Jamil & Chaouki Ghenai & Abdallah Shanableh, 2022. "Prospective of Response Surface Methodology as an Optimization Tool for Biomass Gasification Process," Energies, MDPI, vol. 16(1), pages 1-18, December.
    19. Rolandas Paulauskas & Kęstutis Zakarauskas & Nerijus Striūgas, 2021. "An Intensification of Biomass and Waste Char Gasification in a Gasifier," Energies, MDPI, vol. 14(7), pages 1-11, April.
    20. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:80:y:2015:i:c:p:133-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.