IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1983-d529623.html
   My bibliography  Save this article

An Intensification of Biomass and Waste Char Gasification in a Gasifier

Author

Listed:
  • Rolandas Paulauskas

    (Laboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos Str. 3, LT-44403 Kaunas, Lithuania)

  • Kęstutis Zakarauskas

    (Laboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos Str. 3, LT-44403 Kaunas, Lithuania)

  • Nerijus Striūgas

    (Laboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos Str. 3, LT-44403 Kaunas, Lithuania)

Abstract

Gasification is considered a clean and effective way to convert low quality biomass to higher value gas and solve various waste utilization problems as well. However, only 80% of biomass is converted through thermal processes. The remaining part is char, which requires more time for conversion and in that case reduces the efficiency of gasifier. Seeking to optimize the process of gasification, this work focuses on the intensification of residual char gasification in a gasifier. For this purpose, three different types of char prepared from wood, sewage sludge and tire were examined under different conditions in a lab-scale gasification setup. Results showed that the air flux increase from 0.11 kg/(m 2 s) to 0.32 kg/(m 2 s) intensified the gasification process and the gasification rate increased from 0.8 to 2.61 g/min with the decrease of duration of wood char gasification by 72%. An additional introduction of pyrolysis gas into the char gasifier led to decreased bed temperatures, but the gasification rate increased from 0.8 to 1.25 g/min and from 2.61 g/min to 2.83 g/min, respectively, for the wood char and the sewage sludge char. Moreover, the use of pyrolysis gas coupled with air as the gasifying agent enhanced the composition of produced gas from char, and the CO 2 concentration decreased by 1.68 vol% while the H 2 concentration increased by 2.8 vol%.

Suggested Citation

  • Rolandas Paulauskas & Kęstutis Zakarauskas & Nerijus Striūgas, 2021. "An Intensification of Biomass and Waste Char Gasification in a Gasifier," Energies, MDPI, vol. 14(7), pages 1-11, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1983-:d:529623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henriksen, Ulrik & Ahrenfeldt, Jesper & Jensen, Torben Kvist & Gøbel, Benny & Bentzen, Jens Dall & Hindsgaul, Claus & Sørensen, Lasse Holst, 2006. "The design, construction and operation of a 75kW two-stage gasifier," Energy, Elsevier, vol. 31(10), pages 1542-1553.
    2. Khiari, Besma & Jeguirim, Mejdi & Limousy, Lionel & Bennici, Simona, 2019. "Biomass derived chars for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 253-273.
    3. Jerzy Chojnacki & Jan Najser & Krzysztof Rokosz & Vaclav Peer & Jan Kielar & Bogusława Berner, 2020. "Syngas Composition: Gasification of Wood Pellet with Water Steam through a Reactor with Continuous Biomass Feed System," Energies, MDPI, vol. 13(17), pages 1-14, August.
    4. Lin, Chiou-Liang & Chou, Jing-Dong & Iu, Chi-Hou, 2020. "Effects of second-stage bed materials on hydrogen production in the syngas of a two-stage gasification process," Renewable Energy, Elsevier, vol. 154(C), pages 903-912.
    5. Adam Koniuszy & Małgorzata Hawrot-Paw & Cezary Podsiadło & Paweł Sędłak & Ewa Możdżer, 2020. "Gasification of Cup Plant ( Silphium perfoliatum L.) Biomass–Energy Recovery and Environmental Impacts," Energies, MDPI, vol. 13(18), pages 1-13, September.
    6. Dongju Kim & Dong-kyoo Park & Yong-taek Lim & Soo-nam Park & Yeong-Su Park & Kyunghyun Kim, 2021. "Combustion Melting Characterisation of Solid Fuel Obtained from Sewage Sludge," Energies, MDPI, vol. 14(4), pages 1-18, February.
    7. Plis, P. & Wilk, R.K., 2011. "Theoretical and experimental investigation of biomass gasification process in a fixed bed gasifier," Energy, Elsevier, vol. 36(6), pages 3838-3845.
    8. Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savelii Kukharets & Gennadii Golub & Marek Wrobel & Olena Sukmaniuk & Krzysztof Mudryk & Taras Hutsol & Algirdas Jasinskas & Marcin Jewiarz & Jonas Cesna & Iryna Horetska, 2022. "A Theoretical Model of the Gasification Rate of Biomass and Its Experimental Confirmation," Energies, MDPI, vol. 15(20), pages 1-15, October.
    2. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.
    3. Yepes Maya, Diego Mauricio & Silva Lora, Electo Eduardo & Andrade, Rubenildo Vieira & Ratner, Albert & Martínez Angel, Juan Daniel, 2021. "Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach," Renewable Energy, Elsevier, vol. 177(C), pages 1014-1030.
    4. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    5. Pereira, Emanuele Graciosa & da Silva, Jadir Nogueira & de Oliveira, Jofran L. & Machado, Cássio S., 2012. "Sustainable energy: A review of gasification technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4753-4762.
    6. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    7. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    8. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    9. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    10. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    11. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    12. Setyawan, M. Ismail Bagus & Dafiqurrohman, Hafif & Akbar, Maha Hidayatullah & Surjosatyo, Adi, 2021. "Characterizing a two-stage downdraft biomass gasifier using a representative particle model," Renewable Energy, Elsevier, vol. 173(C), pages 750-767.
    13. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    14. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.
    15. Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 74(C), pages 875-883.
    16. David Bannon & Mirka Deza & Masoud Masoumi & Bahareh Estejab, 2023. "Assessment of Irregular Biomass Particles Fluidization in Bubbling Fluidized Beds," Energies, MDPI, vol. 16(4), pages 1-20, February.
    17. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    18. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    19. Gröbl, Thomas & Walter, Heimo & Haider, Markus, 2012. "Biomass steam gasification for production of SNG – Process design and sensitivity analysis," Applied Energy, Elsevier, vol. 97(C), pages 451-461.
    20. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1983-:d:529623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.