IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i7p1192-1203.html
   My bibliography  Save this article

Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts

Author

Listed:
  • Jin, Gong
  • Iwaki, Hiroyuki
  • Arai, Norio
  • Kitagawa, Kuniyuki

Abstract

This study focuses on waste paper gasification in carbon dioxide atmosphere with molten alkali carbonates including potassium, sodium, lithium carbonate or their intermixtures as catalyst. The molten catalysts is capable of facilitating a desired reaction (C+CO2→2CO), which was hardly feasible even at a high temperature of 973K if catalyst absences. It is that the catalysts which provides a gas–liquid interface between carbon and carbon dioxide, replacing original gas–solid, then allows the two reactants contact each other effectively. Further experimental results demonstrate that the intermixture carbonates exhibit strongly enhancement on catalytic activity than any carbonate salts in the form of single. The reaction rate depends on temperature evaluating manners, a rapid heating processes is favorable to the aimed reaction. With respect to recycling of carbon dioxide, the process provides a conversion in 30%.

Suggested Citation

  • Jin, Gong & Iwaki, Hiroyuki & Arai, Norio & Kitagawa, Kuniyuki, 2005. "Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts," Energy, Elsevier, vol. 30(7), pages 1192-1203.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:7:p:1192-1203
    DOI: 10.1016/j.energy.2004.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420400355X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. D. Cortright & R. R. Davda & J. A. Dumesic, 2002. "Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water," Nature, Nature, vol. 418(6901), pages 964-967, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Hongyou & Wu, Shubin & Yin, Xiuli & Huang, Yanqin & Guo, Daliang & Wu, Chuangzhi, 2018. "Adjustment of biomass product gas to raise H2/CO ratio and remove tar over sodium titanate catalysts," Renewable Energy, Elsevier, vol. 115(C), pages 288-298.
    2. Chen, Wei-Hsin & Lin, Bo-Jhih, 2013. "Hydrogen and synthesis gas production from activated carbon and steam via reusing carbon dioxide," Applied Energy, Elsevier, vol. 101(C), pages 551-559.
    3. Backer, Michael & Gladen, Adam, 2023. "Impact of salt composition and temperature on low-temperature torrefaction of pine in molten nitrate salts," Energy, Elsevier, vol. 263(PE).
    4. Li, Jun & Xie, Yingpu & Zeng, Kuo & Flamant, Gilles & Yang, Haiping & Yang, Xinyi & Zhong, Dian & Du, Zhenyi & Chen, Hanping, 2020. "Biomass gasification in molten salt for syngas production," Energy, Elsevier, vol. 210(C).
    5. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    6. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.
    7. Han, Jun & Kim, Heejoon, 2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 397-416, February.
    8. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "Single-fuel steam gasification of switchgrass and coal in a bubbling fluidized bed: A comprehensive parametric reference for co-gasification study," Energy, Elsevier, vol. 80(C), pages 133-147.
    9. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.
    10. Zhang, Shangzhong & Yoshikawa, Kunio & Nakagome, Hideki & Kamo, Tohru, 2013. "Kinetics of the steam gasification of a phenolic circuit board in the presence of carbonates," Applied Energy, Elsevier, vol. 101(C), pages 815-821.
    11. Hathaway, Brandon J. & Honda, Masanori & Kittelson, David B. & Davidson, Jane H., 2013. "Steam gasification of plant biomass using molten carbonate salts," Energy, Elsevier, vol. 49(C), pages 211-217.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yevheniia Ziabina & Tetyana Pimonenko, 2020. "The Green Deal Policy for Renewable Energy: A Bibliometric Analysis," Virtual Economics, The London Academy of Science and Business, vol. 3(4), pages 147-168, October.
    2. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    3. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    4. Ane Caroline Pereira Borges & Jude Azubuike Onwudili & Heloysa Andrade & Carine Alves & Andrew Ingram & Silvio Vieira de Melo & Ednildo Torres, 2020. "Catalytic Properties and Recycling of NiFe 2 O 4 Catalyst for Hydrogen Production by Supercritical Water Gasification of Eucalyptus Wood Chips," Energies, MDPI, vol. 13(17), pages 1-17, September.
    5. Wang, Jian & Wang, Yincheng & Dong, Xiaoshan & Hu, Yongjie & Tao, Junyu & Kumar, Akash & Yan, Beibei & Chen, Yuxuan & Su, Hong & Chen, Guanyi, 2024. "Insights into behaviors of functional groups in biomass derived products during aqueous phase reforming over Ni/α-MoO3 catalysts," Renewable Energy, Elsevier, vol. 224(C).
    6. Yi Zhang & Mingting Kou & Kaihua Chen & Jiancheng Guan & Yuchen Li, 2016. "Modelling the Basic Research Competitiveness Index (BR-CI) with an application to the biomass energy field," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1221-1241, September.
    7. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Guo, Y. & Wang, S.Z. & Xu, D.H. & Gong, Y.M. & Ma, H.H. & Tang, X.Y., 2010. "Review of catalytic supercritical water gasification for hydrogen production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 334-343, January.
    9. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    10. Oliveira, A.S. & Baeza, J.A. & Garcia, D. & Saenz de Miera, B. & Calvo, L. & Rodriguez, J.J. & Gilarranz, M.A., 2020. "Effect of basicity in the aqueous phase reforming of brewery wastewater for H2 production," Renewable Energy, Elsevier, vol. 148(C), pages 889-896.
    11. Cai, Lei & He, Tianzhi & Xiang, Yanlei & Guan, Yanwen, 2020. "Study on the reaction pathways of steam methane reforming for H2 production," Energy, Elsevier, vol. 207(C).
    12. Menezes, João Paulo da S.Q. & Duarte, Karine R. & Manfro, Robinson L. & Souza, Mariana M.V.M., 2020. "Effect of niobia addition on cobalt catalysts supported on alumina for glycerol steam reforming," Renewable Energy, Elsevier, vol. 148(C), pages 864-875.
    13. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    14. Justicia, Jéssica & Alberto Baeza, José & de Oliveira, Adriana S. & Calvo, Luisa & Heras, Francisco & Gilarranz, Miguel A., 2022. "Aqueous-phase reforming of water-soluble compounds from pyrolysis bio-oils," Renewable Energy, Elsevier, vol. 199(C), pages 895-907.
    15. Đurišić-Mladenović, Nataša & Škrbić, Biljana D. & Zabaniotou, Anastasia, 2016. "Chemometric interpretation of different biomass gasification processes based on the syngas quality: Assessment of crude glycerol co-gasification with lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 649-661.
    16. Tekin, Kubilay & Karagöz, Selhan & Bektaş, Sema, 2014. "A review of hydrothermal biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 673-687.
    17. Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
    18. Menezes, André O. & Rodrigues, Michelly T. & Zimmaro, Adriana & Borges, Luiz E.P. & Fraga, Marco A., 2011. "Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides," Renewable Energy, Elsevier, vol. 36(2), pages 595-599.
    19. Adhikari, Sushil & Fernando, Sandun D. & Haryanto, Agus, 2008. "Hydrogen production from glycerin by steam reforming over nickel catalysts," Renewable Energy, Elsevier, vol. 33(5), pages 1097-1100.
    20. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:7:p:1192-1203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.