IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v2y2009i3p556-581d5393.html
   My bibliography  Save this article

Thermochemical Biomass Gasification: A Review of the Current Status of the Technology

Author

Listed:
  • Ajay Kumar

    (Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA)

  • David D. Jones

    (Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA)

  • Milford A. Hanna

    (Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
    Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA)

Abstract

A review was conducted on the use of thermochemical biomass gasification for producing biofuels, biopower and chemicals. The upstream processes for gasification are similar to other biomass processing methods. However, challenges remain in the gasification and downstream processing for viable commercial applications. The challenges with gasification are to understand the effects of operating conditions on gasification reactions for reliably predicting and optimizing the product compositions, and for obtaining maximal efficiencies. Product gases can be converted to biofuels and chemicals such as Fischer-Tropsch fuels, green gasoline, hydrogen, dimethyl ether, ethanol, methanol, and higher alcohols. Processes and challenges for these conversions are also summarized.

Suggested Citation

  • Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:2:y:2009:i:3:p:556-581:d:5393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/2/3/556/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/2/3/556/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uddin, Sk Noim & Barreto, Leonardo, 2007. "Biomass-fired cogeneration systems with CO2 capture and storage," Renewable Energy, Elsevier, vol. 32(6), pages 1006-1019.
    2. Kirubakaran, V. & Sivaramakrishnan, V. & Nalini, R. & Sekar, T. & Premalatha, M. & Subramanian, P., 2009. "A review on gasification of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 179-186, January.
    3. Han, Jun & Kim, Heejoon, 2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 397-416, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Huiyuan Shi & Wen Si & Xi Li, 2016. "The Concept, Design and Performance of a Novel Rotary Kiln Type Air-Staged Biomass Gasifier," Energies, MDPI, vol. 9(2), pages 1-18, January.
    3. Amigun, Bamikole & Gorgens, Johann & Knoetze, Hansie, 2010. "Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance," Energy Policy, Elsevier, vol. 38(1), pages 312-322, January.
    4. Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz, 2013. "Energetic analysis of a system integrated with biomass gasification," Energy, Elsevier, vol. 52(C), pages 265-278.
    5. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    6. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    7. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    8. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    9. Ricci, Olivia, 2012. "Providing adequate economic incentives for bioenergies with CO2 capture and geological storage," Energy Policy, Elsevier, vol. 44(C), pages 362-373.
    10. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
    11. Arthur M. James R. & Wenqiao Yuan & Michael D. Boyette, 2016. "The Effect of Biomass Physical Properties on Top-Lit Updraft Gasification of Woodchips," Energies, MDPI, vol. 9(4), pages 1-13, April.
    12. Myung Lang Yoo & Yong Ho Park & Young-Kwon Park & Sung Hoon Park, 2016. "Catalytic Pyrolysis of Wild Reed over a Zeolite-Based Waste Catalyst," Energies, MDPI, vol. 9(3), pages 1-9, March.
    13. Tsupari, Eemeli & Arponen, Timo & Hankalin, Ville & Kärki, Janne & Kouri, Sampo, 2017. "Feasibility comparison of bioenergy and CO2 capture and storage in a large combined heat, power and cooling system," Energy, Elsevier, vol. 139(C), pages 1040-1051.
    14. Przybyla, Grzegorz & Szlek, Andrzej & Haggith, Dale & Sobiesiak, Andrzej, 2016. "Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas," Energy, Elsevier, vol. 116(P3), pages 1464-1478.
    15. Hu, Zhongfa & Wang, Xuebin & Zhang, Lan & Yang, Shunzhi & Ruan, Renhui & Bai, Shengjie & Zhu, Yiming & Wang, Liang & Mikulčić, Hrvoje & Tan, Houzhang, 2020. "Emission characteristics of particulate matters from a 30 MW biomass-fired power plant in China," Renewable Energy, Elsevier, vol. 155(C), pages 225-236.
    16. Cao, Bin & Wang, Shuang & Hu, Yamin & Abomohra, Abd El-Fatah & Qian, Lili & He, Zhixia & Wang, Qian & Uzoejinwa, Benjamin Bernard & Esakkimuthu, Sivakumar, 2019. "Effect of washing with diluted acids on Enteromorpha clathrata pyrolysis products: Towards enhanced bio-oil from seaweeds," Renewable Energy, Elsevier, vol. 138(C), pages 29-38.
    17. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    18. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    19. Li, C.Y. & Wu, J.Y. & Shen, Y. & Kan, X. & Dai, Y.J. & Wang, C.-H., 2018. "Evaluation of a combined cooling, heating, and power system based on biomass gasification in different climate zones in the U.S," Energy, Elsevier, vol. 144(C), pages 326-340.
    20. Wei, Rufei & Feng, Shanghuan & Long, Hongming & Li, Jiaxin & Yuan, Zhongshun & Cang, Daqiang & Xu, Chunbao (Charles), 2017. "Coupled biomass (lignin) gasification and iron ore reduction: A novel approach for biomass conversion and application," Energy, Elsevier, vol. 140(P1), pages 406-414.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:2:y:2009:i:3:p:556-581:d:5393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.