IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics096014812301193x.html
   My bibliography  Save this article

A novel building envelope combined with jumping-droplet thermal diode: From theory to practice

Author

Listed:
  • Zhao, Hengxin
  • Wu, Yifan
  • Sun, Hongli
  • Lin, Borong
  • Zhong, Minlin
  • Jiang, Guochen
  • Wu, Shuangdui

Abstract

Intelligent and adjustable building envelopes have the advantages of energy saving and comfort compared to traditional building envelopes and are an important direction for future development in the field of building engineering. However, complex regulation principle and redundant control methods limit their practical applications and large-scale developments. To overcome these limitations, in this study, through the innovative application of superhydrophobic and superhydrophilic materials, we first fabricated jumping-droplet thermal diodes with a maximum unidirectional heat transfer capacity of 18.24–26.62 times with large dynamic adjustment margins. Then, the performance-adjustable building envelope combined with the jumping-droplet thermal diode was designed. The simulation results showed that the building envelope can achieve 19.81% energy saving in mild climate zones, and the cooling energy saving potential in different climate zones ranges from 12.11 to 22.11%. The adjustment capacity of the new building envelope is 3.34 times that of the traditional dynamic building envelope. This study promotes innovations in the field of building and materials and their simultaneous application, which can provide some practical references for switchable heat transfer building envelopes.

Suggested Citation

  • Zhao, Hengxin & Wu, Yifan & Sun, Hongli & Lin, Borong & Zhong, Minlin & Jiang, Guochen & Wu, Shuangdui, 2023. "A novel building envelope combined with jumping-droplet thermal diode: From theory to practice," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s096014812301193x
    DOI: 10.1016/j.renene.2023.119278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301193X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    2. Krarti, Moncef, 2023. "Optimal energy performance of dynamic sliding and insulated shades for residential buildings," Energy, Elsevier, vol. 263(PB).
    3. Hu, Mingke & Zhao, Bin & Li, Jing & Wang, Yunyun & Pei, Gang, 2017. "Preliminary thermal analysis of a combined photovoltaic–photothermic–nocturnal radiative cooling system," Energy, Elsevier, vol. 137(C), pages 419-430.
    4. Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.
    5. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    6. Bai, Yijie & He, Yurong, 2022. "Enhanced solar modulation ability of smart windows based on hydroxypropyl cellulose mixed with nonionic surfactants," Renewable Energy, Elsevier, vol. 198(C), pages 749-759.
    7. Dehwah, Ammar H.A. & Krarti, Moncef, 2022. "Optimal controls of precooling strategies using switchable insulation systems for commercial buildings," Applied Energy, Elsevier, vol. 320(C).
    8. Kishore, Ravi Anant & Bianchi, Marcus V.A. & Booten, Chuck & Vidal, Judith & Jackson, Roderick, 2021. "Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls," Applied Energy, Elsevier, vol. 283(C).
    9. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    2. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    3. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    4. Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    5. Gonçalves, M. & Figueiredo, A. & Almeida, R.M.S.F. & Vicente, R., 2024. "Dynamic façades in buildings: A systematic review across thermal comfort, energy efficiency and daylight performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Tong Lei & Zuoqin Qian & Jie Ren, 2023. "Performance Evaluation of LiBr-H 2 O and LiCl-H 2 O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources," Energies, MDPI, vol. 16(16), pages 1-19, August.
    7. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    8. Zhang, Shicong & Xu, Wei & Wang, Ke & Feng, Wei & Athienitis, Andreas & Hua, Ge & Okumiya, Masaya & Yoon, Gyuyoung & Cho, Dong woo & Iyer-Raniga, Usha & Mazria, Edward & Lyu, Yanjie, 2020. "Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050," Energy, Elsevier, vol. 213(C).
    9. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    10. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    11. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
    12. Yuxue Zhang & Rui Wang & Xingyuan Yang & He Zhang, 2023. "Can China Achieve Its Carbon Emission Peak Target? Empirical Evidence from City-Scale Driving Factors and Emission Reduction Strategies," Land, MDPI, vol. 12(6), pages 1-21, May.
    13. Zhang, Yuan & Sun, Xiaoqin & Medina, Mario A., 2024. "Experimental assessment of concrete masonry units integrated with insulation and phase change material: A wall-pattern study," Energy, Elsevier, vol. 289(C).
    14. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    16. Haiyan Duan & Shipei Zhang & Siying Duan & Weicheng Zhang & Zhiyuan Duan & Shuo Wang & Junnian Song & Xian’en Wang, 2019. "Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    17. Jiping Sheng & Xiaoge Gao & Yongqi Sun, 2024. "Sustainability of the Food Industry: Ecological Efficiency and Influencing Mechanism of Carbon Emissions Trading Policy in China," Sustainability, MDPI, vol. 16(5), pages 1-25, March.
    18. Younghoon Kwak & Jeong-A Kang & Jung-Ho Huh & Tae-Hyoung Kim & Young-Sun Jeong, 2019. "An Analysis of the Effectiveness of Greenhouse Gas Reduction Policy for Office Building Design in South Korea," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    19. Liu, Ningyin & Zhang, Yan & Fath, Brian D., 2021. "The material metabolism characteristics and growth patterns of the central cities of China's Beijing-Tianjin-Hebei region," Ecological Modelling, Elsevier, vol. 448(C).
    20. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s096014812301193x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.