IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v73y2014icp943-957.html
   My bibliography  Save this article

A planning model to assess hydrogen as an alternative fuel for national light-duty vehicle portfolio

Author

Listed:
  • Krishnan, Venkat
  • Gonzalez-Marciaga, Lizbeth
  • McCalley, James

Abstract

This paper assesses using hydrogen as alternative fuel in U.S LDV (light-duty vehicle) transportation system. Firstly, the paper develops the hydrogen network model consisting of multiple production pathways that eventually lead to the FCVs (fuel-cell vehicles) for passenger transportation; such that the interdependency of hydrogen network with energy system and the competition of FCVs with other LDV modes (plug-in hybrid electric vehicles and gasoline vehicles) are captured. Then, the evaluation of economics and environmental impact of large-scale hydrogen deployment in national LDV market is analyzed by simulating long-term energy and transportation infrastructure planning studies, and the factors that influence the penetration of FCVs are assessed from the national economics and sustainability standpoint. It is seen from the results that economics and sustainability of PHEV (pluggable electric hybrid vehicle) penetration is very much dependent on the availability of low cost renewables, and given a practical limit on renewable generation expansion and tighter imposition of carbon policies, FCVs do prove to be highly valuable in rendering the national LDV portfolio sustainable and resilient against petroleum related events. With improvements in FCV investment cost of about 11–19%, they can outperform PHEVs and gasoline vehicles as the economic and sustainable LDV option under high renewable power generation portfolio.

Suggested Citation

  • Krishnan, Venkat & Gonzalez-Marciaga, Lizbeth & McCalley, James, 2014. "A planning model to assess hydrogen as an alternative fuel for national light-duty vehicle portfolio," Energy, Elsevier, vol. 73(C), pages 943-957.
  • Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:943-957
    DOI: 10.1016/j.energy.2014.06.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214008081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.06.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kromer, Matthew A. & Bandivadekar, Anup & Evans, Christopher, 2010. "Long-term greenhouse gas emission and petroleum reduction goals: Evolutionary pathways for the light-duty vehicle sector," Energy, Elsevier, vol. 35(1), pages 387-397.
    2. Smith, William J., 2010. "Plug-in hybrid electric vehicles--A low-carbon solution for Ireland?," Energy Policy, Elsevier, vol. 38(3), pages 1485-1499, March.
    3. Juul, Nina & Meibom, Peter, 2011. "Optimal configuration of an integrated power and transport system," Energy, Elsevier, vol. 36(5), pages 3523-3530.
    4. Chang, Le & Li, Zheng & Gao, Dan & Huang, He & Ni, Weidou, 2007. "Pathways for hydrogen infrastructure development in China: Integrated assessment for vehicle fuels and a case study of Beijing," Energy, Elsevier, vol. 32(11), pages 2023-2037.
    5. Gül, Timur & Kypreos, Socrates & Turton, Hal & Barreto, Leonardo, 2009. "An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM)," Energy, Elsevier, vol. 34(10), pages 1423-1437.
    6. Yang, Christopher, 2008. "Hydrogen and electricity: Parallels, interactions,and convergence," Institute of Transportation Studies, Working Paper Series qt0p14s1cg, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Lei & Manier, Hervé & Manier, Marie-Ange, 2019. "Hydrogen supply chain network design: An optimization-oriented review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 342-360.
    2. Helgeson, Broghan & Peter, Jakob, 2020. "The role of electricity in decarbonizing European road transport – Development and assessment of an integrated multi-sectoral model," Applied Energy, Elsevier, vol. 262(C).
    3. Iranzo, Alfredo & Boillat, Pierre, 2018. "CFD simulation of the transient gas transport in a PEM fuel cell cathode during AC impedance testing considering liquid water effects," Energy, Elsevier, vol. 158(C), pages 449-457.
    4. Jiali Yu & Peng Yang & Kai Zhang & Faping Wang & Lixin Miao, 2018. "Evaluating the Effect of Policies and the Development of Charging Infrastructure on Electric Vehicle Diffusion in China," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    5. Ibrahim M. Hezam & Arunodaya Raj Mishra & Pratibha Rani & Fausto Cavallaro & Abhijit Saha & Jabir Ali & Wadim Strielkowski & Dalia Štreimikienė, 2022. "A Hybrid Intuitionistic Fuzzy-MEREC-RS-DNMA Method for Assessing the Alternative Fuel Vehicles with Sustainability Perspectives," Sustainability, MDPI, vol. 14(9), pages 1-32, May.
    6. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    7. Dong-Shang Chang & Sheng-Hung Chen & Chia-Wei Hsu & Allen H. Hu & Gwo-Hshiung Tzeng, 2015. "Evaluation Framework for Alternative Fuel Vehicles: Sustainable Development Perspective," Sustainability, MDPI, vol. 7(9), pages 1-25, August.
    8. Ribau, João P. & Sousa, João M.C. & Silva, Carla M., 2015. "Reducing the carbon footprint of urban bus fleets using multi-objective optimization," Energy, Elsevier, vol. 93(P1), pages 1089-1104.
    9. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    10. Sungmi Bae & Eunhan Lee & Jinil Han, 2020. "Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    11. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    12. Ismail, Mohamed M. & Dincer, Ibrahim, 2023. "A new renewable energy based integrated gasification system for hydrogen production from plastic wastes," Energy, Elsevier, vol. 270(C).
    13. Krishnan, Venkat & Das, Trishna, 2015. "Optimal allocation of energy storage in a co-optimized electricity market: Benefits assessment and deriving indicators for economic storage ventures," Energy, Elsevier, vol. 81(C), pages 175-188.
    14. Krishnan, Venkat & McCalley, James D., 2016. "The role of bio-renewables in national energy and transportation systems portfolio planning for low carbon economy," Renewable Energy, Elsevier, vol. 91(C), pages 207-223.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    2. Siskos, Pelopidas & Capros, Pantelis & De Vita, Alessia, 2015. "CO2 and energy efficiency car standards in the EU in the context of a decarbonisation strategy: A model-based policy assessment," Energy Policy, Elsevier, vol. 84(C), pages 22-34.
    3. Guerrero-Lemus, Ricardo & Marrero, Gustavo A. & Puch, Luis A., 2012. "Costs for conventional and renewable fuels and electricity in the worldwide transport sector: A mean–variance portfolio approach," Energy, Elsevier, vol. 44(1), pages 178-188.
    4. Dedinec, Aleksandar & Markovska, Natasa & Taseska, Verica & Duic, Neven & Kanevce, Gligor, 2013. "Assessment of climate change mitigation potential of the Macedonian transport sector," Energy, Elsevier, vol. 57(C), pages 177-187.
    5. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    6. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    7. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    8. Juul, Nina, 2012. "Battery prices and capacity sensitivity: Electric drive vehicles," Energy, Elsevier, vol. 47(1), pages 403-410.
    9. van Vliet, Oscar & van den Broek, Machteld & Turkenburg, Wim & Faaij, André, 2011. "Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage," Energy Policy, Elsevier, vol. 39(1), pages 248-268, January.
    10. Mondal, Md. Alam Hossain & Ringler, Claudia & Al-Riffai, Perrihan & Eldidi, Hagar & Breisinger, Clemens & Wiebelt, Manfred, 2019. "Long-term optimization of Egypt’s power sector: Policy implications," Energy, Elsevier, vol. 166(C), pages 1063-1073.
    11. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    12. Talaei, A. & Begg, K. & Jamasb, T., 2012. "The Large Scale Roll-Out of Electric Vehicles: The Effect on the Electricity Sector and CO2 Emissions," Cambridge Working Papers in Economics 1246, Faculty of Economics, University of Cambridge.
    13. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    14. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    15. Lin, Boqiang & Li, Zheng, 2020. "Is more use of electricity leading to less carbon emission growth? An analysis with a panel threshold model," Energy Policy, Elsevier, vol. 137(C).
    16. Juul, Nina & Meibom, Peter, 2012. "Road transport and power system scenarios for Northern Europe in 2030," Applied Energy, Elsevier, vol. 92(C), pages 573-582.
    17. Liu, Nian & Chen, Zheng & Liu, Jie & Tang, Xiao & Xiao, Xiangning & Zhang, Jianhua, 2014. "Multi-objective optimization for component capacity of the photovoltaic-based battery switch stations: Towards benefits of economy and environment," Energy, Elsevier, vol. 64(C), pages 779-792.
    18. Ali Heidarzadeh Vazifehkhoran & Jin Mi Triolo & Søren Ugilt Larsen & Kasper Stefanek & Sven G. Sommer, 2016. "Assessment of the Variability of Biogas Production from Sugar Beet Silage as Affected by Movement and Loss of the Produced Alcohols and Organic Acids," Energies, MDPI, vol. 9(5), pages 1-11, May.
    19. Torchio, Marco F. & Santarelli, Massimo G., 2010. "Energy, environmental and economic comparison of different powertrain/fuel options using well-to-wheels assessment, energy and external costs – European market analysis," Energy, Elsevier, vol. 35(10), pages 4156-4171.
    20. Engelen, Peter-Jan & Kool, Clemens & Li, Ye, 2016. "A barrier options approach to modeling project failure: The case of hydrogen fuel infrastructure," Resource and Energy Economics, Elsevier, vol. 43(C), pages 33-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:73:y:2014:i:c:p:943-957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.