IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v67y2014icp569-574.html
   My bibliography  Save this article

Homogeneous catalysis of soybean oil transesterification via methylic and ethylic routes: Multivariate comparison

Author

Listed:
  • Borges, Karen Araújo
  • Squissato, André Luiz
  • Santos, Douglas Queiroz
  • Neto, Waldomiro Borges
  • Batista, Antônio Carlos Ferreira
  • Silva, Tiago Almeida
  • Vieira, Andressa Tironi
  • de Oliveira, Marcelo Firmino
  • Hernández-Terrones, Manuel Gonzalo

Abstract

An experiment to establish the best reaction conditions for the transesterification of soybean oil is described. We conducted the ethylic and methylic routes using two different protocols, and evaluated how the variables time, stirring, alcohol/oil molar ratio, catalyst (%), catalyst type, and temperature affected the process. The highest yield of biodiesel was obtained using the following conditions: ethylic route – t = 60 min, stirring: 100 rpm, ethanol/oil molar ratio = 12:1, catalyst relative to oil (%) = 0.2%, catalyst = potassium ethoxide, temperature = 35 °C; methylic route – t = 30 min, stirring: 100 rpm, methanol/oil molar ratio = 6:1, catalyst (%) = 0.2%, catalyst = KOH, temperature = 55 °C. We analyzed the acidity, moisture content, density at 20 °C, kinematic viscosity at 40 °C, oxidative stability, and carbon residue at the biodiesels obtained under optimal conditions. The results were consistent with the values allowed by the Brazilian ANP (Resolution 07/2008). We also conducted the physicochemical analysis of the soybean oil used as feedstock to produce biodiesel.

Suggested Citation

  • Borges, Karen Araújo & Squissato, André Luiz & Santos, Douglas Queiroz & Neto, Waldomiro Borges & Batista, Antônio Carlos Ferreira & Silva, Tiago Almeida & Vieira, Andressa Tironi & de Oliveira, Marce, 2014. "Homogeneous catalysis of soybean oil transesterification via methylic and ethylic routes: Multivariate comparison," Energy, Elsevier, vol. 67(C), pages 569-574.
  • Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:569-574
    DOI: 10.1016/j.energy.2014.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214001455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rashid, Umer & Rehman, Hafiz Abdul & Hussain, Irshad & Ibrahim, Muhammad & Haider, Muhammad Sajjad, 2011. "Muskmelon (Cucumis melo) seed oil: A potential non-food oil source for biodiesel production," Energy, Elsevier, vol. 36(9), pages 5632-5639.
    2. Hájek, Martin & Skopal, František & Čapek, Libor & Černoch, Michal & Kutálek, Petr, 2012. "Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO," Energy, Elsevier, vol. 48(1), pages 392-397.
    3. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    4. Yun, Huimin & Wang, Meng & Feng, Wei & Tan, Tianwei, 2013. "Process simulation and energy optimization of the enzyme-catalyzed biodiesel production," Energy, Elsevier, vol. 54(C), pages 84-96.
    5. Pousa, Gabriella P.A.G. & Santos, Andre L.F. & Suarez, Paulo A.Z., 2007. "History and policy of biodiesel in Brazil," Energy Policy, Elsevier, vol. 35(11), pages 5393-5398, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gomes Souza, Mateus Cristian & Firmino de Oliveira, Marcelo & Vieira, Andressa Tironi & Marcio de Faria, Anízio & Ferreira Batista, Antônio Carlos, 2021. "Methylic and ethylic biodiesel production from crambe oil (Crambe abyssinica): New aspects for yield and oxidative stability," Renewable Energy, Elsevier, vol. 163(C), pages 368-374.
    2. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Niu, Shengli & Zhou, Yan & Li, Hui & Lu, Chunmei & Liu, Li, 2015. "An investigation on the catalytic capability of the modified white mud after activation in transesterification and kinetic calculation," Energy, Elsevier, vol. 89(C), pages 982-989.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xuezheng, 2013. "Synthesis of biodiesel from waste oil under mild conditions using novel acidic ionic liquid immobilization on poly divinylbenzene," Energy, Elsevier, vol. 63(C), pages 103-108.
    2. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    3. Ding, Hui & Ye, Wei & Wang, Yongqiang & Wang, Xianqin & Li, Lujun & Liu, Dan & Gui, Jianzhou & Song, Chunfeng & Ji, Na, 2018. "Process intensification of transesterification for biodiesel production from palm oil: Microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids," Energy, Elsevier, vol. 144(C), pages 957-967.
    4. Noraini, M.Y. & Ong, Hwai Chyuan & Badrul, Mohamed Jan & Chong, W.T., 2014. "A review on potential enzymatic reaction for biofuel production from algae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 24-34.
    5. Vadery, Vinu & Narayanan, Binitha N. & Ramakrishnan, Resmi M. & Cherikkallinmel, Sudha Kochiyil & Sugunan, Sankaran & Narayanan, Divya P. & Sasidharan, Sreenikesh, 2014. "Room temperature production of jatropha biodiesel over coconut husk ash," Energy, Elsevier, vol. 70(C), pages 588-594.
    6. Niu, Shengli & Zhou, Yan & Li, Hui & Lu, Chunmei & Liu, Li, 2015. "An investigation on the catalytic capability of the modified white mud after activation in transesterification and kinetic calculation," Energy, Elsevier, vol. 89(C), pages 982-989.
    7. Shahid, Ejaz M. & Jamal, Younis, 2011. "Production of biodiesel: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4732-4745.
    8. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    9. Caires, Anderson R.L. & Scherer, Marisa D. & De Souza, José E. & Oliveira, Samuel L. & M'Peko, Jean-Claude, 2014. "The role of viscosity in the fluorescence behavior of the diesel/biodiesel blends," Renewable Energy, Elsevier, vol. 63(C), pages 388-391.
    10. Li, Zhuoxue & Yang, Depo & Huang, Miaoling & Hu, Xinjun & Shen, Jiangang & Zhao, Zhimin & Chen, Jianping, 2012. "Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource," Applied Energy, Elsevier, vol. 94(C), pages 349-354.
    11. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    12. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    13. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    14. Zhang, X.L. & Yan, S. & Tyagi, R.D. & Surampalli, R.Y., 2013. "Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 216-223.
    15. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    16. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    17. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    18. Mostafaei, Mostafa & Javadikia, Hossein & Naderloo, Leila, 2016. "Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy," Energy, Elsevier, vol. 115(P1), pages 626-636.
    19. Avin Pillay & Arman Molki & Mirella Elkadi & Johnson Manuel & Shrinivas Bojanampati & Mohammed Khan & Sasi Stephen, 2013. "Real-Time Study of Noxious Gas Emissions and Combustion Efficiency of Blended Mixtures of Neem Biodiesel and Petrodiesel," Sustainability, MDPI, vol. 5(5), pages 1-10, May.
    20. Verónica Ávila Vázquez & Miguel Mauricio Aguilera Flores & Luis Felipe Hernández Casas & Nahum Andrés Medellín Castillo & Alejandro Rocha Uribe & Hans Christian Correa Aguado, 2023. "Biodiesel Production Catalyzed by Lipase Extract Powder of Leonotis nepetifolia (Christmas Candlestick) Seed," Energies, MDPI, vol. 16(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:569-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.