IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v54y2013icp84-96.html
   My bibliography  Save this article

Process simulation and energy optimization of the enzyme-catalyzed biodiesel production

Author

Listed:
  • Yun, Huimin
  • Wang, Meng
  • Feng, Wei
  • Tan, Tianwei

Abstract

Biodiesel, as an alternative and renewable fuel, has been studied and developed in recent years. In the present paper, a continuous enzyme-catalyzed biodiesel pilot plant using waste cooking oil, with production capacity of 6482 ton/yr, was simulated by Aspen Plus. Detailed operating conditions and equipment designs were obtained. Five reactions were applied to represent the transesterification of the biodiesel production. The simulation results were in good agreement with the real data. Based on the simulation of the original process, five optimization processes, were proposed focusing on energy saving and methanol recovery. Pinch technology was also used to develop heat exchange networks. Throughout the different optimizations, the quality of biodiesel was still kept at a high purity (>98.5%).

Suggested Citation

  • Yun, Huimin & Wang, Meng & Feng, Wei & Tan, Tianwei, 2013. "Process simulation and energy optimization of the enzyme-catalyzed biodiesel production," Energy, Elsevier, vol. 54(C), pages 84-96.
  • Handle: RePEc:eee:energy:v:54:y:2013:i:c:p:84-96
    DOI: 10.1016/j.energy.2013.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421300008X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rašković, P. & Anastasovski, A. & Markovska, Lj. & Meško, V., 2010. "Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant," Energy, Elsevier, vol. 35(2), pages 704-717.
    2. Kumaran, P. & Mazlini, Nur & Hussein, Ibrahim & Nazrain, M. & Khairul, M., 2011. "Technical feasibility studies for Langkawi WCO (waste cooking oil) derived-biodiesel," Energy, Elsevier, vol. 36(3), pages 1386-1393.
    3. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    4. Amaro, Helena M. & Guedes, A. Catarina & Malcata, F. Xavier, 2011. "Advances and perspectives in using microalgae to produce biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3402-3410.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mamtani, Kapil & Shahbaz, Kaveh & Farid, Mohammed M., 2021. "Glycerolysis of free fatty acids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Alvarães, Adan de Oliveira & Prata, Diego Martinez & Santos, Lizandro de Sousa, 2019. "Simulation and optimization of a continuous biodiesel plant using nonlinear programming," Energy, Elsevier, vol. 189(C).
    3. Vadery, Vinu & Narayanan, Binitha N. & Ramakrishnan, Resmi M. & Cherikkallinmel, Sudha Kochiyil & Sugunan, Sankaran & Narayanan, Divya P. & Sasidharan, Sreenikesh, 2014. "Room temperature production of jatropha biodiesel over coconut husk ash," Energy, Elsevier, vol. 70(C), pages 588-594.
    4. Noraini, M.Y. & Ong, Hwai Chyuan & Badrul, Mohamed Jan & Chong, W.T., 2014. "A review on potential enzymatic reaction for biofuel production from algae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 24-34.
    5. Wang, Kai & Da, Yangyang & Bi, Haoran & Liu, Yanhui & Chen, Biqiang & Wang, Meng & Liu, Zihe & Nielsen, Jens & Tan, Tianwei, 2023. "A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 208(C), pages 331-340.
    6. Ding, Hui & Ye, Wei & Wang, Yongqiang & Wang, Xianqin & Li, Lujun & Liu, Dan & Gui, Jianzhou & Song, Chunfeng & Ji, Na, 2018. "Process intensification of transesterification for biodiesel production from palm oil: Microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids," Energy, Elsevier, vol. 144(C), pages 957-967.
    7. Durdu Hakan Utku, 2023. "The Evaluation and Improvement of the Production Processes of an Automotive Industry Company via Simulation and Optimization," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    8. Vávra, Aleš & Hájek, Martin & Skopal, Frantisek, 2017. "The removal of free fatty acids from methyl ester," Renewable Energy, Elsevier, vol. 103(C), pages 695-700.
    9. Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
    10. Granjo, José F.O. & Duarte, Belmiro P.M. & Oliveira, Nuno M.C., 2017. "Integrated production of biodiesel in a soybean biorefinery: Modeling, simulation and economical assessment," Energy, Elsevier, vol. 129(C), pages 273-291.
    11. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
    12. Janbarari, Seyed Reza & Ahmadian Behrooz, Hesam, 2020. "Optimal and robust synthesis of the biodiesel production process using waste cooking oil from different feedstocks," Energy, Elsevier, vol. 198(C).
    13. Sun, Dayu & Gao, Lijing & Wei, Ruiping & Pan, Xiaomei & Xiao, Guomin, 2023. "Mechanical vapor recompression coupling organic rankine cycle process for purification of crude biodiesel obtained by solid base-catalyzed transesterification," Energy, Elsevier, vol. 266(C).
    14. Kumar, Ashok & Gudiukaite, Renata & Gricajeva, Alisa & Sadauskas, Mikas & Malunavicius, Vilius & Kamyab, Hesam & Sharma, Swati & Sharma, Tanvi & Pant, Deepak, 2020. "Microbial lipolytic enzymes – promising energy-efficient biocatalysts in bioremediation," Energy, Elsevier, vol. 192(C).
    15. Niu, Shengli & Zhou, Yan & Li, Hui & Lu, Chunmei & Liu, Li, 2015. "An investigation on the catalytic capability of the modified white mud after activation in transesterification and kinetic calculation," Energy, Elsevier, vol. 89(C), pages 982-989.
    16. Liang, Xuezheng, 2013. "Synthesis of biodiesel from waste oil under mild conditions using novel acidic ionic liquid immobilization on poly divinylbenzene," Energy, Elsevier, vol. 63(C), pages 103-108.
    17. Borges, Karen Araújo & Squissato, André Luiz & Santos, Douglas Queiroz & Neto, Waldomiro Borges & Batista, Antônio Carlos Ferreira & Silva, Tiago Almeida & Vieira, Andressa Tironi & de Oliveira, Marce, 2014. "Homogeneous catalysis of soybean oil transesterification via methylic and ethylic routes: Multivariate comparison," Energy, Elsevier, vol. 67(C), pages 569-574.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    2. Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
    3. Chen, Kang-Shin & Lin, Yuan-Chung & Hsu, Kuo-Hsiang & Wang, Hsin-Kai, 2012. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system," Energy, Elsevier, vol. 38(1), pages 151-156.
    4. Zheng, Longyu & Hou, Yanfei & Li, Wu & Yang, Sen & Li, Qing & Yu, Ziniu, 2012. "Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes," Energy, Elsevier, vol. 47(1), pages 225-229.
    5. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    6. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    7. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    8. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    9. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sharma, Meeta & Malhotra, R.K., 2009. "Influence of metal contaminants on oxidation stability of Jatropha biodiesel," Energy, Elsevier, vol. 34(9), pages 1271-1275.
    10. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    11. Devin Moeller & Heidi L. Sieverding & James J. Stone, 2017. "Comparative Farm-Gate Life Cycle Assessment of Oilseed Feedstocks in the Northern Great Plains," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-16, December.
    12. Li, Zhuoxue & Yang, Depo & Huang, Miaoling & Hu, Xinjun & Shen, Jiangang & Zhao, Zhimin & Chen, Jianping, 2012. "Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource," Applied Energy, Elsevier, vol. 94(C), pages 349-354.
    13. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    14. José Hidalgo-Crespo & César I. Alvarez-Mendoza & Manuel Soto & Jorge Luis Amaya-Rivas, 2022. "Towards a Circular Economy Development for Household Used Cooking Oil in Guayaquil: Quantification, Characterization, Modeling, and Geographical Mapping," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    15. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    16. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    17. Cheng, Jay J. & Timilsina, Govinda R., 2011. "Status and barriers of advanced biofuel technologies: A review," Renewable Energy, Elsevier, vol. 36(12), pages 3541-3549.
    18. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    19. Adhirath Mandal & HaengMuk Cho & Bhupendra Singh Chauhan, 2022. "Experimental Investigation of Multiple Fry Waste Soya Bean Oil in an Agricultural CI Engine," Energies, MDPI, vol. 15(9), pages 1-14, April.
    20. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:54:y:2013:i:c:p:84-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.