Process simulation and energy optimization of the enzyme-catalyzed biodiesel production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2013.01.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rašković, P. & Anastasovski, A. & Markovska, Lj. & Meško, V., 2010. "Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant," Energy, Elsevier, vol. 35(2), pages 704-717.
- Amaro, Helena M. & Guedes, A. Catarina & Malcata, F. Xavier, 2011. "Advances and perspectives in using microalgae to produce biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3402-3410.
- Kumaran, P. & Mazlini, Nur & Hussein, Ibrahim & Nazrain, M. & Khairul, M., 2011. "Technical feasibility studies for Langkawi WCO (waste cooking oil) derived-biodiesel," Energy, Elsevier, vol. 36(3), pages 1386-1393.
- Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vávra, Aleš & Hájek, Martin & Skopal, Frantisek, 2017. "The removal of free fatty acids from methyl ester," Renewable Energy, Elsevier, vol. 103(C), pages 695-700.
- Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
- Granjo, José F.O. & Duarte, Belmiro P.M. & Oliveira, Nuno M.C., 2017. "Integrated production of biodiesel in a soybean biorefinery: Modeling, simulation and economical assessment," Energy, Elsevier, vol. 129(C), pages 273-291.
- Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
- Mamtani, Kapil & Shahbaz, Kaveh & Farid, Mohammed M., 2021. "Glycerolysis of free fatty acids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Janbarari, Seyed Reza & Ahmadian Behrooz, Hesam, 2020. "Optimal and robust synthesis of the biodiesel production process using waste cooking oil from different feedstocks," Energy, Elsevier, vol. 198(C).
- Sun, Dayu & Gao, Lijing & Wei, Ruiping & Pan, Xiaomei & Xiao, Guomin, 2023. "Mechanical vapor recompression coupling organic rankine cycle process for purification of crude biodiesel obtained by solid base-catalyzed transesterification," Energy, Elsevier, vol. 266(C).
- Kumar, Ashok & Gudiukaite, Renata & Gricajeva, Alisa & Sadauskas, Mikas & Malunavicius, Vilius & Kamyab, Hesam & Sharma, Swati & Sharma, Tanvi & Pant, Deepak, 2020. "Microbial lipolytic enzymes – promising energy-efficient biocatalysts in bioremediation," Energy, Elsevier, vol. 192(C).
- Alvarães, Adan de Oliveira & Prata, Diego Martinez & Santos, Lizandro de Sousa, 2019. "Simulation and optimization of a continuous biodiesel plant using nonlinear programming," Energy, Elsevier, vol. 189(C).
- Vadery, Vinu & Narayanan, Binitha N. & Ramakrishnan, Resmi M. & Cherikkallinmel, Sudha Kochiyil & Sugunan, Sankaran & Narayanan, Divya P. & Sasidharan, Sreenikesh, 2014. "Room temperature production of jatropha biodiesel over coconut husk ash," Energy, Elsevier, vol. 70(C), pages 588-594.
- Niu, Shengli & Zhou, Yan & Li, Hui & Lu, Chunmei & Liu, Li, 2015. "An investigation on the catalytic capability of the modified white mud after activation in transesterification and kinetic calculation," Energy, Elsevier, vol. 89(C), pages 982-989.
- Noraini, M.Y. & Ong, Hwai Chyuan & Badrul, Mohamed Jan & Chong, W.T., 2014. "A review on potential enzymatic reaction for biofuel production from algae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 24-34.
- Wang, Kai & Da, Yangyang & Bi, Haoran & Liu, Yanhui & Chen, Biqiang & Wang, Meng & Liu, Zihe & Nielsen, Jens & Tan, Tianwei, 2023. "A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 208(C), pages 331-340.
- Liang, Xuezheng, 2013. "Synthesis of biodiesel from waste oil under mild conditions using novel acidic ionic liquid immobilization on poly divinylbenzene," Energy, Elsevier, vol. 63(C), pages 103-108.
- Ding, Hui & Ye, Wei & Wang, Yongqiang & Wang, Xianqin & Li, Lujun & Liu, Dan & Gui, Jianzhou & Song, Chunfeng & Ji, Na, 2018. "Process intensification of transesterification for biodiesel production from palm oil: Microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids," Energy, Elsevier, vol. 144(C), pages 957-967.
- Borges, Karen Araújo & Squissato, André Luiz & Santos, Douglas Queiroz & Neto, Waldomiro Borges & Batista, Antônio Carlos Ferreira & Silva, Tiago Almeida & Vieira, Andressa Tironi & de Oliveira, Marce, 2014. "Homogeneous catalysis of soybean oil transesterification via methylic and ethylic routes: Multivariate comparison," Energy, Elsevier, vol. 67(C), pages 569-574.
- Durdu Hakan Utku, 2023. "The Evaluation and Improvement of the Production Processes of an Automotive Industry Company via Simulation and Optimization," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zheng, Longyu & Hou, Yanfei & Li, Wu & Yang, Sen & Li, Qing & Yu, Ziniu, 2012. "Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes," Energy, Elsevier, vol. 47(1), pages 225-229.
- Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
- Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
- Chen, Kang-Shin & Lin, Yuan-Chung & Hsu, Kuo-Hsiang & Wang, Hsin-Kai, 2012. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system," Energy, Elsevier, vol. 38(1), pages 151-156.
- de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
- Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
- Devin Moeller & Heidi L. Sieverding & James J. Stone, 2017. "Comparative Farm-Gate Life Cycle Assessment of Oilseed Feedstocks in the Northern Great Plains," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-16, December.
- Li, Zhuoxue & Yang, Depo & Huang, Miaoling & Hu, Xinjun & Shen, Jiangang & Zhao, Zhimin & Chen, Jianping, 2012. "Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource," Applied Energy, Elsevier, vol. 94(C), pages 349-354.
- José Hidalgo-Crespo & César I. Alvarez-Mendoza & Manuel Soto & Jorge Luis Amaya-Rivas, 2022. "Towards a Circular Economy Development for Household Used Cooking Oil in Guayaquil: Quantification, Characterization, Modeling, and Geographical Mapping," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
- Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
- M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
- Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
- Adhirath Mandal & HaengMuk Cho & Bhupendra Singh Chauhan, 2022. "Experimental Investigation of Multiple Fry Waste Soya Bean Oil in an Agricultural CI Engine," Energies, MDPI, vol. 15(9), pages 1-14, April.
- Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
- Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
- Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
- Adhirath Mandal & Dowan Cha & HaengMuk Cho, 2023. "Impact of Waste Fry Biofuel on Diesel Engine Performance and Emissions," Energies, MDPI, vol. 16(9), pages 1-23, April.
- Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
- Raju, Pradeep & Masimalai, Senthil Kumar & Ganesan, Nataraj & Karthic, S.V., 2020. "Engine’s behavior on hydrogen addition of waste cooking oil fueled light duty diesel engine - A dual fuel approach," Energy, Elsevier, vol. 194(C).
- Zhang, Huiming & Zheng, Yu & Cao, Jie & Qiu, Yueming, 2017. "Has government intervention effectively encouraged the use of waste cooking oil as an energy source? Comparison of two Chinese biofuel companies," Energy, Elsevier, vol. 140(P1), pages 708-715.
More about this item
Keywords
Biodiesel production; Process simulation; Methanol recovery; Energy saving;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:54:y:2013:i:c:p:84-96. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.