IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v82y2015icp1-22.html
   My bibliography  Save this article

Role of various moving walls on energy transfer rates via heat flow visualization during mixed convection in square cavities

Author

Listed:
  • Roy, Monisha
  • Roy, S.
  • Basak, Tanmay

Abstract

Mixed convection in closed cavities are important for various processing industries especially those associated with conservation of energy. Finite element based simulations are carried out for two cases based on the motion of the horizontal wall(s) (cases 1a–1d) or vertical wall(s) (cases 2a–2c). Heat flow distribution within the cavity enclosed by isothermally hot bottom wall, cold side walls and insulated top wall is analyzed for various fluids with Prandtl number, Pr = 0.026 and 7.2, Reynolds number, Re = 10–100 and Grashof number, Gr = 103–105. The direction of motion of wall(s) plays a significant role on the fluid flow field at Pr = 0.026, Gr = 103 and Re = 10 due to dominant forced convection for both horizontally (cases 1a–1d) or vertically (cases 2a–2c) moving wall(s). At Pr = 7.2, Gr = 105 and Re = 100, multiple convective heatline cells are observed for cases 1a–1d. It is found that, the strength of fluid or heatline circulation cells is less at Re = 100 compared to Re = 10 for cases 2a–2c due to weak buoyancy force at high Re. Energy transfer rates are assessed via local and average Nusselt numbers for cases 1a–1d and 2a–2c.

Suggested Citation

  • Roy, Monisha & Roy, S. & Basak, Tanmay, 2015. "Role of various moving walls on energy transfer rates via heat flow visualization during mixed convection in square cavities," Energy, Elsevier, vol. 82(C), pages 1-22.
  • Handle: RePEc:eee:energy:v:82:y:2015:i:c:p:1-22
    DOI: 10.1016/j.energy.2014.11.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214013140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.11.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Wei & Ji, Jie & He, Wei, 2010. "Influence of channel depth on the performance of solar air heaters," Energy, Elsevier, vol. 35(10), pages 4201-4207.
    2. Abbassi, H., 2007. "Entropy generation analysis in a uniformly heated microchannel heat sink," Energy, Elsevier, vol. 32(10), pages 1932-1947.
    3. Kurtbaş, İrfan & Celik, Nevin & Dinçer, İbrahim, 2010. "Exergy transfer in a porous rectangular channel," Energy, Elsevier, vol. 35(1), pages 451-460.
    4. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    5. Bahiraei, Farid & Saray, Rahim Khoshbakhti & Salehzadeh, Aidin, 2011. "Investigation of potential of improvement of helical coils based on avoidable and unavoidable exergy destruction concepts," Energy, Elsevier, vol. 36(5), pages 3113-3119.
    6. Jaisankar, S. & Radhakrishnan, T.K. & Sheeba, K.N., 2009. "Studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system with helical twisted tapes," Energy, Elsevier, vol. 34(9), pages 1054-1064.
    7. Sciacovelli, Adriano & Verda, Vittorio, 2009. "Entropy generation analysis in a monolithic-type solid oxide fuel cell (SOFC)," Energy, Elsevier, vol. 34(7), pages 850-865.
    8. Granados, David A. & Chejne, Farid & Mejía, Juan M. & Gómez, Carlos A. & Berrío, Ariel & Jurado, William J., 2014. "Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln," Energy, Elsevier, vol. 64(C), pages 615-625.
    9. Satapathy, Ashok K., 2009. "Thermodynamic optimization of a coiled tube heat exchanger under constant wall heat flux condition," Energy, Elsevier, vol. 34(9), pages 1122-1126.
    10. Bosbach, Johannes & Pennecot, Julien & Wagner, Claus & Raffel, Markus & Lerche, Thomas & Repp, Stefan, 2006. "Experimental and numerical simulations of turbulent ventilation in aircraft cabins," Energy, Elsevier, vol. 31(5), pages 694-705.
    11. Jalilinasrabady, Saeid & Palsson, Halldor & Saevarsdottir, Gudrun & Itoi, Ryuichi & Valdimarsson, Pall, 2013. "Experimental and CFD simulation of heat efficiency improvement in geothermal spas," Energy, Elsevier, vol. 56(C), pages 124-134.
    12. Maveety, J.G. & Razani, A., 1996. "A two-dimensional numerical investigation of the optimal removal time and entropy production rate for a sensible thermal storage system," Energy, Elsevier, vol. 21(12), pages 1265-1276.
    13. Xamán, J. & Ortiz, A. & Álvarez, G. & Chávez, Y., 2011. "Effect of a contaminant source (CO2) on the air quality in a ventilated room," Energy, Elsevier, vol. 36(5), pages 3302-3318.
    14. Sehgal, R.C. & Jaluria, Y., 1982. "Horizontal recirculation in water bodies due to thermal discharge," Energy, Elsevier, vol. 7(5), pages 419-428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikhailenko, Stepan A. & Sheremet, Mikhail A. & Pop, Ioan, 2020. "Natural convection combined with surface radiation in a rotating cavity with an element of variable volumetric heat generation," Energy, Elsevier, vol. 210(C).
    2. Biswas, Nirmalendu & Mandal, Dipak Kumar & Manna, Nirmal K. & Benim, Ali Cemal, 2023. "Enhanced energy and mass transport dynamics in a thermo-magneto-bioconvective porous system containing oxytactic bacteria and nanoparticles: cleaner energy application," Energy, Elsevier, vol. 263(PB).
    3. Goutam Saha & Ahmed A.Y. Al-Waaly & Manosh C. Paul & Suvash C. Saha, 2023. "Heat Transfer in Cavities: Configurative Systematic Review," Energies, MDPI, vol. 16(5), pages 1-53, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaluri, Ram Satish & Basak, Tanmay, 2011. "Entropy generation due to natural convection in discretely heated porous square cavities," Energy, Elsevier, vol. 36(8), pages 5065-5080.
    2. Li, Zhouhang & Zhai, Yuling & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2016. "A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles," Energy, Elsevier, vol. 116(P1), pages 661-676.
    3. Ahadi, Mohammad & Abbassi, Abbas, 2015. "Entropy generation analysis of laminar forced convection through uniformly heated helical coils considering effects of high length and heat flux and temperature dependence of thermophysical properties," Energy, Elsevier, vol. 82(C), pages 322-332.
    4. Amani, E. & Nobari, M.R.H., 2011. "A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature," Energy, Elsevier, vol. 36(8), pages 4909-4918.
    5. Ibáñez, Guillermo & Cuevas, Sergio, 2010. "Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel," Energy, Elsevier, vol. 35(10), pages 4149-4155.
    6. Ibáñez, Guillermo & López, Aracely & Pantoja, Joel & Moreira, Joel & Reyes, Juan A., 2013. "Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels," Energy, Elsevier, vol. 50(C), pages 143-149.
    7. Alawadhi, Esam M., 2011. "Cooling process of water in a horizontal circular enclosure subjected to non-uniform boundary conditions," Energy, Elsevier, vol. 36(1), pages 586-594.
    8. Basak, Tanmay & Anandalakshmi, R. & Kumar, Pushpendra & Roy, S., 2012. "Entropy generation vs energy flow due to natural convection in a trapezoidal cavity with isothermal and non-isothermal hot bottom wall," Energy, Elsevier, vol. 37(1), pages 514-532.
    9. Li, Zhouhang & Zhai, Yuling & Bi, Dapeng & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2017. "Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles," Energy, Elsevier, vol. 140(P1), pages 530-545.
    10. Rajaseenivasan, T. & Srinivasan, S. & Srithar, K., 2015. "Comprehensive study on solar air heater with circular and V-type turbulators attached on absorber plate," Energy, Elsevier, vol. 88(C), pages 863-873.
    11. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    12. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    13. Khargotra, Rohit & Kumar, Raj & András, Kovács & Fekete, Gusztáv & Singh, Tej, 2022. "Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach," Energy, Elsevier, vol. 261(PB).
    14. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    15. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.
    16. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    17. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    18. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    19. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    20. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:82:y:2015:i:c:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.