IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i9p1285-1296.html
   My bibliography  Save this article

Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts

Author

Listed:
  • Chui, E.H.
  • Majeski, A.J.
  • Douglas, M.A.
  • Tan, Y.
  • Thambimuthu, K.V.

Abstract

Significant progress has been made in both experimental investigations and numerical modelling of oxy-fuel combustion for CO2 capture purposes at the CANMET Vertical Combustor Research Facility. Detailed in-flame measurements have revealed insights into flow field development and pollutant formation characteristics over a wide range of operating conditions using natural gas and coals. A numerical modelling capability has also been developed in parallel and validated by in-flame data. This study marks the first use by CANMET of this numerical modelling expertise to develop design ideas before expensive and time-consuming experimental work is done. Its focus is on evaluating burner and combustor design concepts for oxy-coal combustion when air is substituted with oxygen in the recycled flue gas mode. Model results indicate that a new burner design approach can potentially reduce NOx at furnace exit by over 70% with respect to the existing design, while providing significant improvements in overall flame characteristics. Also, the numerical study produces quantitative evidence in support of enlarging the present combustor to an inner diameter of 1 m in order to minimize wall effects, which become important when trying to expand the flame volume so as to improve oxygen management within the flame. The first set of experimental results collected from the new burner–combustor combination validates the predicted improvements in NOx reduction and combustion performance.

Suggested Citation

  • Chui, E.H. & Majeski, A.J. & Douglas, M.A. & Tan, Y. & Thambimuthu, K.V., 2004. "Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts," Energy, Elsevier, vol. 29(9), pages 1285-1296.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1285-1296
    DOI: 10.1016/j.energy.2004.03.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204001719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Granados, David A. & Chejne, Farid & Mejía, Juan M. & Gómez, Carlos A. & Berrío, Ariel & Jurado, William J., 2014. "Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln," Energy, Elsevier, vol. 64(C), pages 615-625.
    2. Karim, Md Rezwanul & Bhuiyan, Arafat Ahmed & Sarhan, Abd Alhamid Rafea & Naser, Jamal, 2020. "CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler," Renewable Energy, Elsevier, vol. 146(C), pages 1416-1428.
    3. Liang, Xiaorui & Wang, Qinhui & Luo, Zhongyang & Eddings, Eric & Ring, Terry & Li, Simin & Lin, Junjie & Xue, Shuang & Han, Long & Xie, Guilin, 2019. "Experimental and numerical investigation on sulfur transformation in pressurized oxy-fuel combustion of pulverized coal," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Xiaolin Chen & Junlin Xie & Shuxia Mei & Feng He, 2018. "NOx and SO 2 Emissions during Co-Combustion of RDF and Anthracite in the Environment of Precalciner," Energies, MDPI, vol. 11(2), pages 1-13, February.
    5. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    6. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    7. Álvarez, L. & Yin, C. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions," Energy, Elsevier, vol. 62(C), pages 255-268.
    8. Riaza, J. & Álvarez, L. & Gil, M.V. & Pevida, C. & Pis, J.J. & Rubiera, F., 2011. "Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor," Energy, Elsevier, vol. 36(8), pages 5314-5319.
    9. Oh, Jeongseog, 2016. "Spectral characteristics of a premixed oxy-methane flame in atmospheric conditions," Energy, Elsevier, vol. 116(P1), pages 986-997.
    10. Chen, Zhichao & Li, Zhengqi & Zhu, Qunyi & Jing, Jianping, 2011. "Gas/particle flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 709-723.
    11. Oh, Jeongseog & Noh, Dongsoon, 2012. "Laminar burning velocity of oxy-methane flames in atmospheric condition," Energy, Elsevier, vol. 45(1), pages 669-675.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1285-1296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.