IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp1152-1158.html
   My bibliography  Save this article

Investigation of μDMFC (micro direct methanol fuel cell) with self-adaptive flow rate

Author

Listed:
  • Yuan, Zhenyu
  • Fu, Wenting
  • Zhao, Yang
  • Li, Zipeng
  • Zhang, Yufeng
  • Liu, Xiaowei

Abstract

The objective of this paper is to investigate the performance characteristics of μDMFC (micro direct methanol fuel cell) using a novel concept of self-adaptive anode feeding pattern, which can be controlled by detecting the operating current. A comprehensive analysis, including polarization curve, methanol permeation current, mass transport efficiency and CO2 volume fraction, is conducted to investigate the characterization of anode flow rate in different current regions. A metal-based μDMFC with the active area of 0.64 cm2 is designed, fabricated and tested. Also, the circuit implementation is proposed. The results reveal that the cell with self-adaptive flow rate represents better stability and responding ability compared to the μDMFC with the constant flow rate.

Suggested Citation

  • Yuan, Zhenyu & Fu, Wenting & Zhao, Yang & Li, Zipeng & Zhang, Yufeng & Liu, Xiaowei, 2013. "Investigation of μDMFC (micro direct methanol fuel cell) with self-adaptive flow rate," Energy, Elsevier, vol. 55(C), pages 1152-1158.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:1152-1158
    DOI: 10.1016/j.energy.2013.03.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213002521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.03.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carton, J.G. & Olabi, A.G., 2010. "Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(7), pages 2796-2806.
    2. Li, Xianglin & Faghri, Amir, 2011. "Local entropy generation analysis on passive high-concentration DMFCs (direct methanol fuel cell) with different cell structures," Energy, Elsevier, vol. 36(1), pages 403-414.
    3. Gao, Y. & Sun, G.Q. & Wang, S.L. & Zhu, S., 2010. "Carbon nanotubes based gas diffusion layers in direct methanol fuel cells," Energy, Elsevier, vol. 35(3), pages 1455-1459.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Zou, Yuezhang & Liu, Xiaowei, 2016. "Development of a micro direct methanol fuel cell with heat control," Energy, Elsevier, vol. 116(P1), pages 978-985.
    2. Prapainainar, Paweena & Du, Zehui & Theampetch, Apichaya & Prapainainar, Chaiwat & Kongkachuichay, Paisan & Holmes, Stuart M., 2020. "Properties and DMFC performance of nafion/mordenite composite membrane fabricated by solution-casting method with different solvent ratio," Energy, Elsevier, vol. 190(C).
    3. Zhengang Zhao & Fan Zhang & Yanhui Zhang & Dacheng Zhang, 2021. "Performance Optimization of μ DMFC with Foamed Stainless Steel Cathode Current Collector," Energies, MDPI, vol. 14(20), pages 1-13, October.
    4. Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.
    5. Hidalgo, Diana & Tommasi, Tonia & Cauda, Valentina & Porro, Samuele & Chiodoni, Angelica & Bejtka, Katarzyna & Ruggeri, Bernardo, 2014. "Streamlining of commercial Berl saddles: A new material to improve the performance of microbial fuel cells," Energy, Elsevier, vol. 71(C), pages 615-623.
    6. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Sang, Shengtian & Liu, Xiaowei, 2016. "Systemic modeling and analysis of DMFC stack for behavior prediction in system-level application," Energy, Elsevier, vol. 112(C), pages 1015-1023.
    7. Borghei, Maryam & Scotti, Gianmario & Kanninen, Petri & Weckman, Timo & Anoshkin, Ilya V. & Nasibulin, Albert G. & Franssila, Sami & Kauppinen, Esko I. & Kallio, Tanja & Ruiz, Virginia, 2014. "Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes," Energy, Elsevier, vol. 65(C), pages 612-620.
    8. An, Myung-Gi & Mehmood, Asad & Hwang, Jinyeon & Ha, Heung Yong, 2016. "A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells," Energy, Elsevier, vol. 100(C), pages 217-226.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Zhenyu & Yang, Jie & Li, Xiaoyang & Wang, Shikai, 2016. "The micro-scale analysis of the micro direct methanol fuel cell," Energy, Elsevier, vol. 100(C), pages 10-17.
    2. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
    3. Yuan, Zhenyu & Yang, Jie & Zhang, Yufeng, 2015. "A self-adaptive supply method of micro direct methanol fuel cell," Energy, Elsevier, vol. 91(C), pages 1064-1069.
    4. Xue, Yan Qing & Guo, Hang & Shang, Hui Hui & Ye, Fang & Ma, Chong Fang, 2015. "Simulation of mass transfer in a passive direct methanol fuel cell cathode with perforated current collector," Energy, Elsevier, vol. 81(C), pages 501-510.
    5. Yuan, Zhenyu & Yang, Jie & Zhang, Yufeng & Zhang, Xiwei, 2015. "The optimization of air-breathing micro direct methanol fuel cell using response surface method," Energy, Elsevier, vol. 80(C), pages 340-349.
    6. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    7. Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.
    8. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    9. Fofana, Daouda & Natarajan, Sadesh Kumar & Hamelin, Jean & Benard, Pierre, 2014. "Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach," Energy, Elsevier, vol. 64(C), pages 398-403.
    10. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    11. Okur, Osman & Alper, Erdogan & Almansoori, Ali, 2014. "Optimization of catalyst preparation conditions for direct sodium borohydride fuel cell using response surface methodology," Energy, Elsevier, vol. 67(C), pages 97-105.
    12. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    13. Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.
    14. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    15. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Félix-Navarro, R.M. & Pérez-Sicairos, S. & Reynoso-Soto, E.A. & Lin, S.W. & Flores-Hernández, J.R. & Romero-Castañón, T. & Albarrán-Sánchez, I.L. & Para, 2016. "Evaluation of PtAu/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 109(C), pages 446-455.
    16. Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
    17. Chen, Ben & Cai, Yonghua & Tu, Zhengkai & Chan, Siew Hwa & Wang, Jun & Yu, Yi, 2017. "Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation I. With different electrolytes," Energy, Elsevier, vol. 141(C), pages 40-49.
    18. Boyacı San, Fatma Gül & Okur, Osman & İyigün Karadağ, Çiğdem & Isik-Gulsac, Isil & Okumuş, Emin, 2014. "Evaluation of operating conditions on DBFC (direct borohydride fuel cell) performance with PtRu anode catalyst by response surface method," Energy, Elsevier, vol. 71(C), pages 160-169.
    19. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    20. Wang, Hongjian & Cao, Tianyu & Shi, Yixiang & Cai, Ningsheng & Yuan, Wei, 2014. "Liquid antimony anode direct carbon fuel cell fueled with mass-produced de-ash coal," Energy, Elsevier, vol. 75(C), pages 555-559.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:1152-1158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.