IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011947.html
   My bibliography  Save this article

Multi-objective optimization of comprehensive performance enhancement for proton exchange membrane fuel cell based on machine learning

Author

Listed:
  • Zhou, Yu
  • Meng, Kai
  • Liu, Wei
  • Chen, Ke
  • Chen, Wenshang
  • Zhang, Ning
  • Chen, Ben

Abstract

The comprehensive performance of proton exchange membrane fuel cells depends on operating conditions. This paper innovatively uses the Pearson correlation coefficient to screen the optimization objectives (uniformity index of oxygen, standard deviation of temperature, net power density), and obtains the optimal operating conditions of the proton exchange membrane fuel cell through a multi-objective optimization method. The optimized dataset comes from the simulation results of the three-dimensional numerical model, and the regression model is established through the response surface method. Moreover, the non-dominated sorting genetic algorithm-II is used for processing to obtain the Pareto front solution set, and the optimal operating conditions are obtained from it through the Technique for order preference by similarity to an ideal solution. The analysis of variance result shows that the influence of cathode operating conditions on the comprehensive performance is greater than that of anode, especially the influence of cathode stoichiometry ratio is the most significant. The optimal solution obtained 1.0981 %, 10.5845 %, and 1.0376 % enhancement compared to the optimal values in the simulation results. The differences between the three optimization objectives are only 0.8190 %, 1.0315 %, and 0.8789 % as verified by numerical simulation, thus the machine learning results are reliable and accurate.

Suggested Citation

  • Zhou, Yu & Meng, Kai & Liu, Wei & Chen, Ke & Chen, Wenshang & Zhang, Ning & Chen, Ben, 2024. "Multi-objective optimization of comprehensive performance enhancement for proton exchange membrane fuel cell based on machine learning," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011947
    DOI: 10.1016/j.renene.2024.121126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.