IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219320006.html
   My bibliography  Save this article

Simulation and optimization of a continuous biodiesel plant using nonlinear programming

Author

Listed:
  • Alvarães, Adan de Oliveira
  • Prata, Diego Martinez
  • Santos, Lizandro de Sousa

Abstract

The continuous production of biodiesel is achieved through a sequence of stages such as reaction, absorption, decantation, and product distillation. These steps require certain performance criteria that must be optimized. Several works have addressed the optimization of the design of biodiesel plants, and these have usually examined modifications to the dimensions and types of equipment or energy integration. However, there is only limited literature available on determining optimal operating conditions for existing processes. In this paper, the steady-state optimization of a soybean continuous biodiesel plant is proposed. To this end, a mathematical model to describe the chemical kinetics of soybean oil transesterification was developed and incorporated into a chemical process simulator. The optimization procedure is based on multidimensional Sequential Quadratic Programming (SQP), in which the primary objectives were to minimize the plant’s energy consumption subject to a minimum of 99 wt% biodiesel purity. The results reveal that the optimization of the current process allows a 4.45% reduction in energy consumption compared to the base case. Besides, the study also evidenced that the optimization approach can be applied to recalculate the optimal point when possible disturbances can deviate the system from a steady state.

Suggested Citation

  • Alvarães, Adan de Oliveira & Prata, Diego Martinez & Santos, Lizandro de Sousa, 2019. "Simulation and optimization of a continuous biodiesel plant using nonlinear programming," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219320006
    DOI: 10.1016/j.energy.2019.116305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219320006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coronado, Christian Rodriguez & Tuna, Celso Eduardo & Zanzi, Rolando & Vane, Lucas F. & Silveira, José Luz, 2014. "Development of a thermoeconomic methodology for optimizing biodiesel production. Part II: Manufacture exergetic cost and biodiesel production cost incorporating carbon credits, a Brazilian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 565-572.
    2. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    3. Yun, Huimin & Wang, Meng & Feng, Wei & Tan, Tianwei, 2013. "Process simulation and energy optimization of the enzyme-catalyzed biodiesel production," Energy, Elsevier, vol. 54(C), pages 84-96.
    4. Coronado, Christian Rodriguez & Tuna, Celso Eduardo & Zanzi, Rolando & Vane, Lucas F. & Silveira, José Luz, 2013. "Development of a thermoeconomic methodology for the optimization of biodiesel production—Part I: Biodiesel plant and thermoeconomic functional diagram," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 138-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Dayu & Gao, Lijing & Wei, Ruiping & Pan, Xiaomei & Xiao, Guomin, 2023. "Mechanical vapor recompression coupling organic rankine cycle process for purification of crude biodiesel obtained by solid base-catalyzed transesterification," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    2. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    5. Katagi, Kariyappa S. & Munnolli, Ravindra S. & Hosamani, Kallappa M., 2011. "Unique occurrence of unusual fatty acid in the seed oil of Aegle marmelos Corre: Screening the rich source of seed oil for bio-energy production," Applied Energy, Elsevier, vol. 88(5), pages 1797-1802, May.
    6. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    7. Azeem, Muhammad Waqar & Hanif, Muhammad Asif & Al-Sabahi, Jamal Nasar & Khan, Asif Ali & Naz, Saima & Ijaz, Aliya, 2016. "Production of biodiesel from low priced, renewable and abundant date seed oil," Renewable Energy, Elsevier, vol. 86(C), pages 124-132.
    8. Saddam H. Al-lwayzy & Talal Yusaf, 2013. "Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines," Energies, MDPI, vol. 6(2), pages 1-18, February.
    9. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    10. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    11. Mishra, Shashank & Anand, K. & Santhosh, S. & Mehta, Pramod S., 2017. "Comparison of biodiesel fuel behavior in a heavy duty turbocharged and a light duty naturally aspirated engine," Applied Energy, Elsevier, vol. 202(C), pages 459-470.
    12. Manzano-Agugliaro, F. & Sanchez-Muros, M.J. & Barroso, F.G. & Martínez-Sánchez, A. & Rojo, S. & Pérez-Bañón, C., 2012. "Insects for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3744-3753.
    13. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    14. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    15. Kim, Kyeongsu & Suh, Young-Woong & Ha, Jeong-Myeong & An, Jinjoo & Lee, Ung, 2023. "A comprehensive analysis of biphasic reaction system for economical biodiesel production process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    17. Safieddin Ardebili, M. & Ghobadian, B. & Najafi, G. & Chegeni, A., 2011. "Biodiesel production potential from edible oil seeds in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3041-3044, August.
    18. Muppaneni, Tapaswy & Reddy, Harvind K. & Patil, Prafulla D. & Dailey, Peter & Aday, Curtis & Deng, Shuguang, 2012. "Ethanolysis of camelina oil under supercritical condition with hexane as a co-solvent," Applied Energy, Elsevier, vol. 94(C), pages 84-88.
    19. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    20. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219320006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.