IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v49y2013icp229-239.html
   My bibliography  Save this article

Energetic optimization of the performances of a hot air engine for micro-CHP systems working with a Joule or an Ericsson cycle

Author

Listed:
  • Creyx, M.
  • Delacourt, E.
  • Morin, C.
  • Desmet, B.
  • Peultier, P.

Abstract

The micro combined heat and electrical power systems (micro-CHP) with hot air engines are well adapted for solid biomass upgrading, in particular, the Ericsson engines working with an open cycle and an external combustion. This paper presents a model of an Ericsson engine with a compression and an expansion cylinder which allows a thermodynamic optimization of the engine performances in a global approach. A sensitive analysis on the influent parameters is carried out in order to determine the optimal working conditions of the engine: temperature and pressure range, expansion cycle shape with a late intake valve closing or an early exhaust valve closing, heat transfers through the wall of the cylinders. This study, focused on thermodynamic aspects, is a first step in the design of an Ericsson engine.

Suggested Citation

  • Creyx, M. & Delacourt, E. & Morin, C. & Desmet, B. & Peultier, P., 2013. "Energetic optimization of the performances of a hot air engine for micro-CHP systems working with a Joule or an Ericsson cycle," Energy, Elsevier, vol. 49(C), pages 229-239.
  • Handle: RePEc:eee:energy:v:49:y:2013:i:c:p:229-239
    DOI: 10.1016/j.energy.2012.10.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212008481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.10.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wojewoda, Jerzy & Kazimierski, Zbyszko, 2010. "Numerical model and investigations of the externally heated valve Joule engine," Energy, Elsevier, vol. 35(5), pages 2099-2108.
    2. Casisi, M. & Pinamonti, P. & Reini, M., 2009. "Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems," Energy, Elsevier, vol. 34(12), pages 2175-2183.
    3. Kongtragool, Bancha & Wongwises, Somchai, 2003. "A review of solar-powered Stirling engines and low temperature differential Stirling engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 131-154, April.
    4. Çinar, Can & Karabulut, Halit, 2005. "Manufacturing and testing of a gamma type Stirling engine," Renewable Energy, Elsevier, vol. 30(1), pages 57-66.
    5. Cinar, Can & Yucesu, Serdar & Topgul, Tolga & Okur, Melih, 2005. "Beta-type Stirling engine operating at atmospheric pressure," Applied Energy, Elsevier, vol. 81(4), pages 351-357, August.
    6. Danon, Gradimir & Furtula, Mladen & Mandić, Marija, 2012. "Possibilities of implementation of CHP (combined heat and power) in the wood industry in Serbia," Energy, Elsevier, vol. 48(1), pages 169-176.
    7. Moss, R. W. & Roskilly, A. P. & Nanda, S. K., 2005. "Reciprocating Joule-cycle engine for domestic CHP systems," Applied Energy, Elsevier, vol. 80(2), pages 169-185, February.
    8. Roy, J.P. & Mishra, M.K. & Misra, Ashok, 2011. "Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions," Applied Energy, Elsevier, vol. 88(9), pages 2995-3004.
    9. Houwing, Michiel & Ajah, Austin N. & Heijnen, Petra W. & Bouwmans, Ivo & Herder, Paulien M., 2008. "Uncertainties in the design and operation of distributed energy resources: The case of micro-CHP systems," Energy, Elsevier, vol. 33(10), pages 1518-1536.
    10. Podesser, Erich, 1999. "Electricity production in rural villages with a biomass Stirling engine," Renewable Energy, Elsevier, vol. 16(1), pages 1049-1052.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngwaka, Ugochukwu & Wu, Dawei & Happian-Smith, Julian & Jia, Boru & Smallbone, Andrew & Diyoke, Chidiebere & Roskilly, Anthony Paul, 2021. "Parametric analysis of a semi-closed-loop linear joule engine generator using argon and oxy-hydrogen combustion," Energy, Elsevier, vol. 217(C).
    2. Chandramouli, R. & Srinivasa Rao, M.S.S. & Ramji, K., 2015. "Parametric and optimization studies of reheat and regenerative Braysson cycle," Energy, Elsevier, vol. 93(P2), pages 2146-2156.
    3. Rui F. Costa & Brendan D. MacDonald, 2018. "Comparison of the Net Work Output between Stirling and Ericsson Cycles," Energies, MDPI, vol. 11(3), pages 1-16, March.
    4. Ngwaka, Ugochukwu & Jia, Boru & Lawrence, Christopher & Wu, Dawei & Smallbone, Andrew & Roskilly, Anthony Paul, 2019. "The characteristics of a Linear Joule Engine Generator operating on a dry friction principle," Applied Energy, Elsevier, vol. 237(C), pages 49-59.
    5. Ngangué, Max Ndamé & Stouffs, Pascal, 2020. "Dynamic simulation of an original Joule cycle liquid pistons hot air Ericsson engine," Energy, Elsevier, vol. 190(C).
    6. Creyx, M. & Delacourt, E. & Morin, C. & Desmet, B., 2016. "Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach," Energy, Elsevier, vol. 102(C), pages 31-43.
    7. Touré, Abdou & Stouffs, Pascal, 2014. "Modeling of the Ericsson engine," Energy, Elsevier, vol. 76(C), pages 445-452.
    8. Chouder, Ryma & Benabdesselam, Azzedine & Stouffs, Pascal, 2023. "Modeling results of a new high performance free liquid piston engine," Energy, Elsevier, vol. 263(PD).
    9. Lontsi, Frederic & Hamandjoda, Oumarou & Fozao, Kennedy & Stouffs, Pascal & Nganhou, Jean, 2013. "Dynamic simulation of a small modified Joule cycle reciprocating Ericsson engine for micro-cogeneration systems," Energy, Elsevier, vol. 63(C), pages 309-316.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui F. Costa & Brendan D. MacDonald, 2018. "Comparison of the Net Work Output between Stirling and Ericsson Cycles," Energies, MDPI, vol. 11(3), pages 1-16, March.
    2. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    3. Sripakagorn, Angkee & Srikam, Chana, 2011. "Design and performance of a moderate temperature difference Stirling engine," Renewable Energy, Elsevier, vol. 36(6), pages 1728-1733.
    4. Touré, Abdou & Stouffs, Pascal, 2014. "Modeling of the Ericsson engine," Energy, Elsevier, vol. 76(C), pages 445-452.
    5. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    6. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
    7. Chmielewski, Adrian & Gumiński, Robert & Mączak, Jędrzej & Radkowski, Stanisław & Szulim, Przemysław, 2016. "Aspects of balanced development of RES and distributed micro-cogeneration use in Poland: Case study of a µCHP with Stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 930-952.
    8. Franco Cotana & Antonio Messineo & Alessandro Petrozzi & Valentina Coccia & Gianluca Cavalaglio & Andrea Aquino, 2014. "Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste," Sustainability, MDPI, vol. 6(9), pages 1-16, August.
    9. Jose Egas & Don M. Clucas, 2018. "Stirling Engine Configuration Selection," Energies, MDPI, vol. 11(3), pages 1-22, March.
    10. Karabulut, H. & Yücesu, H.S. & Çinar, C., 2006. "Nodal analysis of a Stirling engine with concentric piston and displacer," Renewable Energy, Elsevier, vol. 31(13), pages 2188-2197.
    11. Schneider, T. & Müller, D. & Karl, J., 2020. "A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2014. "Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium," Energy, Elsevier, vol. 78(C), pages 701-712.
    13. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2012. "Zero dimensional finite-time thermodynamic, three zones numerical model of a generic Stirling and its experimental validation," Renewable Energy, Elsevier, vol. 47(C), pages 167-174.
    14. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    15. Araoz, Joseph A. & Salomon, Marianne & Alejo, Lucio & Fransson, Torsten H., 2015. "Numerical simulation for the design analysis of kinematic Stirling engines," Applied Energy, Elsevier, vol. 159(C), pages 633-650.
    16. Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
    17. Komninos, N.P. & Rogdakis, E.D., 2018. "Numerical investigation into the effect of compressor and expander valve timings on the performance of an Ericsson engine equipped with a gas-to-gas heat exchanger," Energy, Elsevier, vol. 163(C), pages 1077-1092.
    18. Creyx, M. & Delacourt, E. & Morin, C. & Desmet, B., 2016. "Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach," Energy, Elsevier, vol. 102(C), pages 31-43.
    19. Lontsi, Frederic & Hamandjoda, Oumarou & Fozao, Kennedy & Stouffs, Pascal & Nganhou, Jean, 2013. "Dynamic simulation of a small modified Joule cycle reciprocating Ericsson engine for micro-cogeneration systems," Energy, Elsevier, vol. 63(C), pages 309-316.
    20. Karabulut, Halit & Aksoy, Fatih & Öztürk, Erkan, 2009. "Thermodynamic analysis of a β type Stirling engine with a displacer driving mechanism by means of a lever," Renewable Energy, Elsevier, vol. 34(1), pages 202-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:49:y:2013:i:c:p:229-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.