IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i13p2188-2197.html
   My bibliography  Save this article

Nodal analysis of a Stirling engine with concentric piston and displacer

Author

Listed:
  • Karabulut, H.
  • Yücesu, H.S.
  • Çinar, C.

Abstract

To reduce the external volume of Stirling engines and to increase the specific power per unit volume, a novel mechanical arrangement is used where the power cylinder is concentrically situated inside the displacer cylinder. The inner heat transfer surface requirement and the thermodynamic performance characteristics are predicted preparing a nodal analysis in FORTRAN, where the inner volume of the engine is divided into 103 cells. Variation of the temperature in cells is calculated using the first law of thermodynamics, given for unsteady open systems, after arranging the enthalpy inflow and outflow terms. Volumes of cells are calculated using kinematic relations devised for the driving mechanism.

Suggested Citation

  • Karabulut, H. & Yücesu, H.S. & Çinar, C., 2006. "Nodal analysis of a Stirling engine with concentric piston and displacer," Renewable Energy, Elsevier, vol. 31(13), pages 2188-2197.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:13:p:2188-2197
    DOI: 10.1016/j.renene.2005.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106000097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kongtragool, Bancha & Wongwises, Somchai, 2003. "A review of solar-powered Stirling engines and low temperature differential Stirling engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 131-154, April.
    2. Çinar, Can & Karabulut, Halit, 2005. "Manufacturing and testing of a gamma type Stirling engine," Renewable Energy, Elsevier, vol. 30(1), pages 57-66.
    3. Dunstan, D. & Probert, D., 2002. "Raising the effectiveness of electricity generation (per unit of fossil-fuel combusted) by less conventional means," Applied Energy, Elsevier, vol. 73(2), pages 103-138, October.
    4. Kongtragool, Bancha & Wongwises, Somchai, 2005. "Investigation on power output of the gamma-configuration low temperature differential Stirling engines," Renewable Energy, Elsevier, vol. 30(3), pages 465-476.
    5. Bǎdescu, V., 1992. "Optimum operation of a solar converter in combination with a Stirling or Ericsson heat engine," Energy, Elsevier, vol. 17(6), pages 601-607.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    2. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas & Feidt, Michel, 2015. "Connectionist intelligent model estimates output power and torque of stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 871-883.
    3. Parlak, Nezaket & Wagner, Andreas & Elsner, Michael & Soyhan, Hakan S., 2009. "Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions," Renewable Energy, Elsevier, vol. 34(1), pages 266-273.
    4. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).
    5. Li, Ruijie & Grosu, Lavinia & Li, Wei, 2017. "New polytropic model to predict the performance of beta and gamma type Stirling engine," Energy, Elsevier, vol. 128(C), pages 62-76.
    6. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    7. Karabulut, Halit & Aksoy, Fatih & Öztürk, Erkan, 2009. "Thermodynamic analysis of a β type Stirling engine with a displacer driving mechanism by means of a lever," Renewable Energy, Elsevier, vol. 34(1), pages 202-208.
    8. Mohammad Hossein Ahmadi & Mohammad-Ali Ahmadi & Mehdi Mehrpooya & Marc A. Rosen, 2015. "Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine," Sustainability, MDPI, vol. 7(2), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    2. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    3. Buliński, Zbigniew & Szczygieł, Ireneusz & Krysiński, Tomasz & Stanek, Wojciech & Czarnowska, Lucyna & Gładysz, Paweł & Kabaj, Adam, 2017. "Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy," Energy, Elsevier, vol. 141(C), pages 2559-2571.
    4. Tavakolpour, Ali Reza & Zomorodian, Ali & Akbar Golneshan, Ali, 2008. "Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator," Renewable Energy, Elsevier, vol. 33(1), pages 77-87.
    5. Rui F. Costa & Brendan D. MacDonald, 2018. "Comparison of the Net Work Output between Stirling and Ericsson Cycles," Energies, MDPI, vol. 11(3), pages 1-16, March.
    6. Karabulut, Halit & Aksoy, Fatih & Öztürk, Erkan, 2009. "Thermodynamic analysis of a β type Stirling engine with a displacer driving mechanism by means of a lever," Renewable Energy, Elsevier, vol. 34(1), pages 202-208.
    7. Kato, Yoshitaka, 2016. "Indicated diagrams of a low temperature differential Stirling engine using flat plates as heat exchangers," Renewable Energy, Elsevier, vol. 85(C), pages 973-980.
    8. Sripakagorn, Angkee & Srikam, Chana, 2011. "Design and performance of a moderate temperature difference Stirling engine," Renewable Energy, Elsevier, vol. 36(6), pages 1728-1733.
    9. Kongtragool, Bancha & Wongwises, Somchai, 2007. "Performance of low-temperature differential Stirling engines," Renewable Energy, Elsevier, vol. 32(4), pages 547-566.
    10. Szczygieł, Ireneusz & Stanek, Wojciech & Szargut, Jan, 2016. "Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity," Energy, Elsevier, vol. 105(C), pages 25-31.
    11. Araoz, Joseph A. & Salomon, Marianne & Alejo, Lucio & Fransson, Torsten H., 2015. "Numerical simulation for the design analysis of kinematic Stirling engines," Applied Energy, Elsevier, vol. 159(C), pages 633-650.
    12. Creyx, M. & Delacourt, E. & Morin, C. & Desmet, B. & Peultier, P., 2013. "Energetic optimization of the performances of a hot air engine for micro-CHP systems working with a Joule or an Ericsson cycle," Energy, Elsevier, vol. 49(C), pages 229-239.
    13. Kongtragool, Bancha & Wongwises, Somchai, 2005. "Optimum absorber temperature of a once-reflecting full conical concentrator of a low temperature differential Stirling engine," Renewable Energy, Elsevier, vol. 30(11), pages 1671-1687.
    14. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
    15. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2014. "Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines," Energy, Elsevier, vol. 69(C), pages 873-890.
    16. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    17. Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
    18. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    19. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    20. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:13:p:2188-2197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.