IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v47y2012i1p370-377.html
   My bibliography  Save this article

Mineral carbonation of flue gas desulfurization gypsum for CO2 sequestration

Author

Listed:
  • Lee, Myung gyu
  • Jang, Young Nam
  • Ryu, Kyung won
  • Kim, Wonbeak
  • Bang, Jun-Hwan

Abstract

In this study, the technical feasibility of the mineral carbonation of flue gas desulfurization (FGD) gypsum to sequester CO2 was assessed by considering various reaction parameters. Unlike other natural and industrial materials, FGD gypsum showed very high carbonation reactivity at room temperature and atmospheric pressure. Under optimum conditions, calcium carbonate with a purity exceeding 90% could be obtained within 10 min at a carbonation rate of approximately 95%. Thus, mineral carbonation of FGD gypsum was found to be technically feasible.

Suggested Citation

  • Lee, Myung gyu & Jang, Young Nam & Ryu, Kyung won & Kim, Wonbeak & Bang, Jun-Hwan, 2012. "Mineral carbonation of flue gas desulfurization gypsum for CO2 sequestration," Energy, Elsevier, vol. 47(1), pages 370-377.
  • Handle: RePEc:eee:energy:v:47:y:2012:i:1:p:370-377
    DOI: 10.1016/j.energy.2012.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212006871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eloneva, Sanni & Teir, Sebastian & Salminen, Justin & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2008. "Fixation of CO2 by carbonating calcium derived from blast furnace slag," Energy, Elsevier, vol. 33(9), pages 1461-1467.
    2. Teir, Sebastian & Eloneva, Sanni & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2007. "Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production," Energy, Elsevier, vol. 32(4), pages 528-539.
    3. Lackner, Klaus S. & Wendt, Christopher H. & Butt, Darryl P. & Joyce, Edward L. & Sharp, David H., 1995. "Carbon dioxide disposal in carbonate minerals," Energy, Elsevier, vol. 20(11), pages 1153-1170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan-Ung Kang & Sang-Woo Ji & Hwanju Jo, 2022. "Recycling of Industrial Waste Gypsum Using Mineral Carbonation," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    2. Chen, Xiaoyi & Jin, Xiaogang & Liu, Zhimin & Ling, Xiang & Wang, Yan, 2018. "Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping," Energy, Elsevier, vol. 155(C), pages 128-138.
    3. Zhao, Zhongzhong & Liu, Wenhuan & Jiang, Yiwen & Li, Hui, 2023. "Enhancement mechanisms of spherical UFA on CO2 capture of waste slag," Energy, Elsevier, vol. 269(C).
    4. Khosa, Azhar Abbas & Yan, J. & Zhao, C.Y., 2021. "Investigating the effects of ZnO dopant on the thermodynamic and kinetic properties of CaCO3/CaO TCES system," Energy, Elsevier, vol. 215(PA).
    5. Song, Kyungsun & Jang, Young-Nam & Kim, Wonbaek & Lee, Myung Gyu & Shin, Dongbok & Bang, Jun-Hwan & Jeon, Chi Wan & Chae, Soo Chun, 2014. "Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum," Energy, Elsevier, vol. 65(C), pages 527-532.
    6. Gu, Hui & Cui, Yanfeng & Zhu, Hongxia & Xue, Rui & Si, Fengqi, 2018. "A new approach for clustering in desulfurization system based on modified framework for gypsum slurry quality monitoring," Energy, Elsevier, vol. 148(C), pages 789-801.
    7. Córdoba, Patricia & Ayora, Carlos & Moreno, Natalia & Font, Oriol & Izquierdo, Maria & Querol, Xavier, 2013. "Influence of an aluminium additive in aqueous and solid speciation of elements in flue gas desulphurisation (FGD) system," Energy, Elsevier, vol. 50(C), pages 438-444.
    8. Ukwattage, N.L. & Ranjith, P.G. & Wang, S.H., 2013. "Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation," Energy, Elsevier, vol. 52(C), pages 230-236.
    9. Lombardi, Lidia & Carnevale, Ennio, 2013. "Economic evaluations of an innovative biogas upgrading method with CO2 storage," Energy, Elsevier, vol. 62(C), pages 88-94.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
    2. Ukwattage, N.L. & Ranjith, P.G. & Wang, S.H., 2013. "Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation," Energy, Elsevier, vol. 52(C), pages 230-236.
    3. Lombardi, Lidia & Carnevale, Ennio, 2013. "Economic evaluations of an innovative biogas upgrading method with CO2 storage," Energy, Elsevier, vol. 62(C), pages 88-94.
    4. Jo, Hoyong & Lee, Min-Gu & Park, Jinwon & Jung, Kwang-Deog, 2017. "Preparation of high-purity nano-CaCO3 from steel slag," Energy, Elsevier, vol. 120(C), pages 884-894.
    5. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    6. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    7. Zhang, Huining & Gao, Chong & Chen, Ben & Tang, Jiang & He, Dongfeng & Xu, Anjun, 2018. "Stainless steel tailings accelerated direct carbonation process at low pressure: Carbonation efficiency evaluation and chromium leaching inhibition correlation analysis," Energy, Elsevier, vol. 155(C), pages 772-781.
    8. Giulia Costa & Alessandra Polettini & Raffaella Pomi & Alessio Stramazzo & Daniela Zingaretti, 2017. "Energetic assessment of CO 2 sequestration through slurry carbonation of steel slag: a factorial study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(3), pages 530-541, June.
    9. Eloneva, Sanni & Said, Arshe & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2012. "Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate," Applied Energy, Elsevier, vol. 90(1), pages 329-334.
    10. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Paulina Rusanowska & Marcin Zieliński & Marcin Dębowski, 2023. "Removal of CO 2 from Biogas during Mineral Carbonation with Waste Materials," IJERPH, MDPI, vol. 20(9), pages 1-10, April.
    12. Robin Koch & Gregor Sailer & Sebastian Paczkowski & Stefan Pelz & Jens Poetsch & Joachim Müller, 2021. "Lab-Scale Carbonation of Wood Ash for CO 2 -Sequestration," Energies, MDPI, vol. 14(21), pages 1-11, November.
    13. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    14. Xiaolong Wang & Aimaro Sanna & M. Mercedes Maroto‐Valer & Tom Paulson, 2015. "Carbon dioxide capture and storage by pH swing mineralization using recyclable ammonium salts and flue gas mixtures," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 389-402, August.
    15. Park, Sangwon, 2018. "CO2 reduction-conversion to precipitates and morphological control through the application of the mineral carbonation mechanism," Energy, Elsevier, vol. 153(C), pages 413-421.
    16. Evangelos Georgakopoulos & Rafael M. Santos & Yi Wai Chiang & Vasilije Manovic, 2016. "Influence of process parameters on carbonation rate and conversion of steelmaking slags – Introduction of the ‘carbonation weathering rate’," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(4), pages 470-491, August.
    17. Chu, Guanrun & Li, Chun & Liu, Weizao & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Wang, Ye & Luo, Dongmei, 2019. "Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process," Energy, Elsevier, vol. 166(C), pages 1314-1322.
    18. Baral, Saroj S. & Singh, Kaustub & Sharma, Prabudh, 2015. "The potential of sustainable algal biofuel production using CO2 from thermal power plant in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1061-1074.
    19. Kakizawa, M. & Yamasaki, A. & Yanagisawa, Y., 2001. "A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid," Energy, Elsevier, vol. 26(4), pages 341-354.
    20. Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:47:y:2012:i:1:p:370-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.