IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v26y2001i4p341-354.html
   My bibliography  Save this article

A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid

Author

Listed:
  • Kakizawa, M.
  • Yamasaki, A.
  • Yanagisawa, Y.

Abstract

A new disposal process for anthropogenic CO2 via an artificially accelerated weathering reaction is proposed to counteract global warming. The process is essentially composed of the following two steps:(1)CaSiO3+2CH3COOH→Ca2++2CH3COO−+H2O+SiO2(2)Ca2++2CH3COO−+CO2+H2O→CaCO3↓+2CH3COOHStep (1) is the extraction of calcium ions by acetic acid from calcium silicate, for example, wollastonite rocks. Step (2) is the deposition of calcium carbonate from the solution of calcium ions by CO2 injection. The Gibbs free energy change of each step is negative; the reactions would proceed spontaneously without consuming large amounts of energy. The CO2 would be captured from the concentrated emission sources such as thermal power plant, and be disposed of and sequestrated in the form of calcium carbonate. The feasibility of the proposed process was evaluated through a process design based on the experimental results of the reaction kinetics. The operational energy consumption was 20.4 MW for the disposal of CO2 produced by a 100-MW thermal power plant.

Suggested Citation

  • Kakizawa, M. & Yamasaki, A. & Yanagisawa, Y., 2001. "A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid," Energy, Elsevier, vol. 26(4), pages 341-354.
  • Handle: RePEc:eee:energy:v:26:y:2001:i:4:p:341-354
    DOI: 10.1016/S0360-5442(01)00005-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544201000056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(01)00005-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lackner, Klaus S. & Wendt, Christopher H. & Butt, Darryl P. & Joyce, Edward L. & Sharp, David H., 1995. "Carbon dioxide disposal in carbonate minerals," Energy, Elsevier, vol. 20(11), pages 1153-1170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernard Jomari B. Razote & Mark Kenneth M. Maranan & Ramon Christian P. Eusebio & Richard D. Alorro & Arnel B. Beltran & Aileen H. Orbecido, 2019. "Determination of the Carbon Dioxide Sequestration Potential of a Nickel Mine Mixed Dump through Leaching Tests," Energies, MDPI, vol. 12(15), pages 1-19, July.
    2. Kodama, Satoshi & Nishimoto, Taiki & Yamamoto, Naoki & Yogo, Katsunori & Yamada, Koichi, 2008. "Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution," Energy, Elsevier, vol. 33(5), pages 776-784.
    3. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
    4. Teir, Sebastian & Eloneva, Sanni & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2007. "Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production," Energy, Elsevier, vol. 32(4), pages 528-539.
    5. Mihee Lim & Gi-Chun Han & Ji-Whan Ahn & Kwang-Suk You, 2010. "Environmental Remediation and Conversion of Carbon Dioxide (CO 2 ) into Useful Green Products by Accelerated Carbonation Technology," IJERPH, MDPI, vol. 7(1), pages 1-26, January.
    6. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    7. Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
    8. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    9. Noor Allesya Alis Ramli & Faradiella Mohd Kusin & Verma Loretta M. Molahid, 2021. "Influencing Factors of the Mineral Carbonation Process of Iron Ore Mining Waste in Sequestering Atmospheric Carbon Dioxide," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    10. Hyun Sic Park & JunYoung Han & Ju Sung Lee & Kwang-Mo Kim & Hyung Jun Jo & Byoung Ryul Min, 2016. "Comparison of Two Processes Forming CaCO 3 Precipitates by Electrolysis," Energies, MDPI, vol. 9(12), pages 1-8, December.
    11. Enze Ren & Siyang Tang & Changjun Liu & Hairong Yue & Chun Li & Bin Liang, 2020. "Carbon dioxide mineralization for the disposition of blast‐furnace slag: reaction intensification using NaCl solutions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 436-448, April.
    12. Eloneva, Sanni & Teir, Sebastian & Salminen, Justin & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2008. "Fixation of CO2 by carbonating calcium derived from blast furnace slag," Energy, Elsevier, vol. 33(9), pages 1461-1467.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.
    2. Ioannis Rigopoulos & Michalis A. Vasiliades & Klito C. Petallidou & Ioannis Ioannou & Angelos M. Efstathiou & Theodora Kyratsi, 2015. "A method to enhance the CO 2 storage capacity of pyroxenitic rocks," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(5), pages 577-591, October.
    3. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestrian: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
    4. Lombardi, Lidia & Carnevale, Ennio, 2013. "Economic evaluations of an innovative biogas upgrading method with CO2 storage," Energy, Elsevier, vol. 62(C), pages 88-94.
    5. Puthiya Veetil, Sanoop Kumar & Rebane, Kaarel & Yörük, Can Rüstü & Lopp, Margus & Trikkel, Andres & Hitch, Michael, 2021. "Aqueous mineral carbonation of oil shale mine waste (limestone): A feasibility study to develop a CO2 capture sorbent," Energy, Elsevier, vol. 221(C).
    6. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestrian: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
    8. Raza, Waseem & Raza, Nadeem & Agbe, Henry & Kumar, R.V. & Kim, Ki-Hyun & Yang, Jianhua, 2018. "Multistep sequestration and storage of CO2 to form valuable products using forsterite," Energy, Elsevier, vol. 155(C), pages 865-873.
    9. Sina Hoseinpoori & David Pallarès & Filip Johnsson & Henrik Thunman, 2023. "A comparative exergy-based assessment of direct air capture technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(7), pages 1-20, October.
    10. Dea Hyun Moon & Jun Eu & Wonhee Lee & Young Eun Kim & Ki Tae Park & You Na Ko & Soon Kwan Jeong & Min Hye Youn, 2020. "Comparison of reactions with different calcium sources for CaCO3 production using carbonic anhydrase," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 898-906, October.
    11. Arcusa, Stephanie & Sprenkle-Hyppolite, Starry, 2022. "Snapshot of the Carbon Sequestration Certification Market Ecosystem," OSF Preprints fu59w, Center for Open Science.
    12. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.
    13. repec:pri:cepsud:94bradford is not listed on IDEAS
    14. Xiaolong Wang & Aimaro Sanna & M. Mercedes Maroto‐Valer & Tom Paulson, 2015. "Carbon dioxide capture and storage by pH swing mineralization using recyclable ammonium salts and flue gas mixtures," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 389-402, August.
    15. Kodama, Satoshi & Nishimoto, Taiki & Yamamoto, Naoki & Yogo, Katsunori & Yamada, Koichi, 2008. "Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution," Energy, Elsevier, vol. 33(5), pages 776-784.
    16. Fatima Haque & Yi Wai Chiang & Rafael M. Santos, 2019. "Alkaline Mineral Soil Amendment: A Climate Change ‘Stabilization Wedge’?," Energies, MDPI, vol. 12(12), pages 1-17, June.
    17. Rigopoulos, Ioannis & Török, Ákos & Kyratsi, Theodora & Delimitis, Andreas & Ioannou, Ioannis, 2018. "Sustainable exploitation of mafic rock quarry waste for carbon sequestration following ball milling," Resources Policy, Elsevier, vol. 59(C), pages 24-32.
    18. Irfan, Muhammad Faisal & Usman, Muhammad Rashid & Rashid, Ajaz, 2018. "A detailed statistical study of heterogeneous, homogeneous and nucleation models for dissolution of waste concrete sample for mineral carbonation," Energy, Elsevier, vol. 158(C), pages 580-591.
    19. Park, Sangwon, 2018. "CO2 reduction-conversion to precipitates and morphological control through the application of the mineral carbonation mechanism," Energy, Elsevier, vol. 153(C), pages 413-421.
    20. Rappold, T.A. & Lackner, K.S., 2010. "Large scale disposal of waste sulfur: From sulfide fuels to sulfate sequestration," Energy, Elsevier, vol. 35(3), pages 1368-1380.
    21. Evangelos Georgakopoulos & Rafael M. Santos & Yi Wai Chiang & Vasilije Manovic, 2016. "Influence of process parameters on carbonation rate and conversion of steelmaking slags – Introduction of the ‘carbonation weathering rate’," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(4), pages 470-491, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:26:y:2001:i:4:p:341-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.