IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v148y2018icp789-801.html
   My bibliography  Save this article

A new approach for clustering in desulfurization system based on modified framework for gypsum slurry quality monitoring

Author

Listed:
  • Gu, Hui
  • Cui, Yanfeng
  • Zhu, Hongxia
  • Xue, Rui
  • Si, Fengqi

Abstract

Wet flue gas desulfurization (WFGD) is very important in reduction of SO2 emission in power plant for its lower investment cost, higher desulfurization efficiency and useful by-products. Healthy slurry works as the premise of performance analysis and optimization in WFGD system. However, little research has been conducted on monitoring gypsum slurry quality deterioration. In this paper, an on-line clustering framework has been proposed to monitor gypsum slurry quality in desulfurization system based on data mining. Compound parameterγ, is put forward to remove the influences to slurry quality from gas volume and inlet SO2 concentration to CaCO3 slurry flow. Thus, after the simplification, desulfurization efficiency, pH value and γ are taken as parameters for gypsum slurry quality monitoring. A new clustering method, EKFCM, based on improved fuzzy clustering algorithm, Kmeans and fuzzy C-means combined with entropy theory is proposed. EKFCM is superior to basic FCM in finding the clustering number without prior knowledge when dealing with off-line data, verified by a self-defined function with validity indexes comparison. A new rule, Sub-TDFO, with time decay inserted into “first in first out” in the subset, is proposed to the framework for on-line learning. Another self-defined function is added to the former one for on-line process simulation to verify the effectiveness of the proposed framework. Then, WFGD system in a 600 MW unit is worked as the clustering case study for gypsum slurry quality on-line monitoring and quantization. The clustering results from the proposed on-line framework can be applied to illustrate the process of gypsum slurry quality variation. Moreover, this method be used in other industry processes data for its on-line features.

Suggested Citation

  • Gu, Hui & Cui, Yanfeng & Zhu, Hongxia & Xue, Rui & Si, Fengqi, 2018. "A new approach for clustering in desulfurization system based on modified framework for gypsum slurry quality monitoring," Energy, Elsevier, vol. 148(C), pages 789-801.
  • Handle: RePEc:eee:energy:v:148:y:2018:i:c:p:789-801
    DOI: 10.1016/j.energy.2018.01.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218302032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galos, K. A. & Smakowski, T. S. & Szlugaj, J., 2003. "Flue-gas desulphurisation products from Polish coal-fired power-plants," Applied Energy, Elsevier, vol. 75(3-4), pages 257-265, July.
    2. Lee, Myung gyu & Jang, Young Nam & Ryu, Kyung won & Kim, Wonbeak & Bang, Jun-Hwan, 2012. "Mineral carbonation of flue gas desulfurization gypsum for CO2 sequestration," Energy, Elsevier, vol. 47(1), pages 370-377.
    3. Islas, Jorge & Grande, Genice, 2008. "Abatement costs of SO2-control options in the Mexican electric-power sector," Applied Energy, Elsevier, vol. 85(2-3), pages 80-94, February.
    4. Kisiela, Anna M. & Czajka, Krzysztof M. & Moroń, Wojciech & Rybak, Wiesław & Andryjowicz, Czesław, 2016. "Unburned carbon from lignite fly ash as an adsorbent for SO2 removal," Energy, Elsevier, vol. 116(P3), pages 1454-1463.
    5. Sun, Zhongwei & Wang, Shengwei & Zhou, Qulan & Hui, Shi'en, 2010. "Experimental study on desulfurization efficiency and gas-liquid mass transfer in a new liquid-screen desulfurization system," Applied Energy, Elsevier, vol. 87(5), pages 1505-1512, May.
    6. Bagirov, Adil M. & Yearwood, John, 2006. "A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems," European Journal of Operational Research, Elsevier, vol. 170(2), pages 578-596, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Jian & Zhang, Lizhong & Zhu, Lei & Zhang, Wei, 2024. "A data-driven operating improvement method for the thermal power unit with frequent load changes," Applied Energy, Elsevier, vol. 354(PB).
    2. Hou, Guolian & Xiong, Jian & Zhou, Guiping & Gong, Linjuan & Huang, Congzhi & Wang, Shunjiang, 2021. "Coordinated control system modeling of ultra-supercritical unit based on a new fuzzy neural network," Energy, Elsevier, vol. 234(C).
    3. Si, Tong & Wang, Chunbo & Liu, Ruiqi & Guo, Yusheng & Yue, Shuang & Ren, Yujie, 2020. "Multi-criteria comprehensive energy efficiency assessment based on fuzzy-AHP method: A case study of post-treatment technologies for coal-fired units," Energy, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heidel, Barna & Hilber, Melanie & Scheffknecht, Günter, 2014. "Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization," Applied Energy, Elsevier, vol. 114(C), pages 485-491.
    2. Karmitsa, Napsu & Bagirov, Adil M. & Taheri, Sona, 2017. "New diagonal bundle method for clustering problems in large data sets," European Journal of Operational Research, Elsevier, vol. 263(2), pages 367-379.
    3. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    4. Ericsson, Karin, 2007. "Co-firing—A strategy for bioenergy in Poland?," Energy, Elsevier, vol. 32(10), pages 1838-1847.
    5. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    6. García-Gusano, Diego & Iribarren, Diego & Dufour, Javier, 2018. "Is coal extension a sensible option for energy planning? A combined energy systems modelling and life cycle assessment approach," Energy Policy, Elsevier, vol. 114(C), pages 413-421.
    7. Khosa, Azhar Abbas & Yan, J. & Zhao, C.Y., 2021. "Investigating the effects of ZnO dopant on the thermodynamic and kinetic properties of CaCO3/CaO TCES system," Energy, Elsevier, vol. 215(PA).
    8. Krzysztof M. Czajka, 2021. "Gasification of Coal by CO 2 : The Impact of the Heat Transfer Limitation on the Progress, Reaction Rate and Kinetics of the Process," Energies, MDPI, vol. 14(17), pages 1-22, September.
    9. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    10. Song, Kyungsun & Jang, Young-Nam & Kim, Wonbaek & Lee, Myung Gyu & Shin, Dongbok & Bang, Jun-Hwan & Jeon, Chi Wan & Chae, Soo Chun, 2014. "Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum," Energy, Elsevier, vol. 65(C), pages 527-532.
    11. Lombardi, Lidia & Carnevale, Ennio, 2013. "Economic evaluations of an innovative biogas upgrading method with CO2 storage," Energy, Elsevier, vol. 62(C), pages 88-94.
    12. Kisiela-Czajka, Anna M., 2022. "Adsorption behaviour of SO2 molecules on unburned carbon from lignite fly ash in the context of developing commercially applicable environmental carbon adsorbent," Energy, Elsevier, vol. 250(C).
    13. Adil Bagirov & Asef Ganjehlou, 2008. "An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 187-206, April.
    14. Jarosław Szlugaj & Krzysztof Galos, 2021. "Limestone Sorbents Market for Flue Gas Desulphurisation in Coal-Fired Power Plants in the Context of the Transformation of the Power Industry—A Case of Poland," Energies, MDPI, vol. 14(14), pages 1-16, July.
    15. Gao, Xiang & Ding, Honglei & Du, Zhen & Wu, Zuliang & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2010. "Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization," Applied Energy, Elsevier, vol. 87(8), pages 2647-2651, August.
    16. Chan-Ung Kang & Sang-Woo Ji & Hwanju Jo, 2022. "Recycling of Industrial Waste Gypsum Using Mineral Carbonation," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    17. Bowen Xiao & Dongxiao Niu & Han Wu & Haichao Wang, 2017. "Marginal Abatement Cost of CO 2 in China Based on Directional Distance Function: An Industry Perspective," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    18. Ewa Lewicka & Jarosław Szlugaj & Anna Burkowicz & Krzysztof Galos, 2020. "Sources and Markets of Limestone Flour in Poland," Resources, MDPI, vol. 9(10), pages 1-16, September.
    19. Sugathan, Anish & Bhangale, Ritesh & Kansal, Vishal & Hulke, Unmil, 2018. "How can Indian power plants cost-effectively meet the new sulfur emission standards? Policy evaluation using marginal abatement cost-curves," Energy Policy, Elsevier, vol. 121(C), pages 124-137.
    20. Jiang, Kaiqi & Yu, Hai & Chen, Linghong & Fang, Mengxiang & Azzi, Merched & Cottrell, Aaron & Li, Kangkang, 2020. "An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:148:y:2018:i:c:p:789-801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.