IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224026392.html
   My bibliography  Save this article

A new strategy for CO2 storage and Al2O3 recovery from blast furnace slag and coal fly ash by employing vacuum reduction and alkali dissolution methods

Author

Listed:
  • Yuan, Haitao
  • Yu, Wenzhou
  • Wen, Jiale
  • Yang, Fan
  • Nyarko-Appiah, Joseph Emmanuel
  • Bai, Chenguang

Abstract

With the growing awareness of carbon emission reduction and environmental protection, the CO2 storage using industrial solid waste as the storing carrier has recently gained an extensive attention. A new strategy for CO2 storage and Al2O3 extraction from blast furnace slag (BFS) and coal fly ash (CFA) has here been proposed by using vacuum reduction and alkali dissolution methods. The results show that the mullite (Al6Si2O13), gehlenite (Ca2Al2SiO7), and akermanite (Ca2MgSi2O7) in CFA and BFS were converted to Fe–Si alloys and CaO·xAl2O3 during vacuum reduction. Thereafter, the CaO·xAl2O3 was dissolved in a mixed solution of Na2CO3 and NaOH to generate CaCO3 and NaAl(OH)4. Finally, the Fe–Si alloy and CaCO3 mixture in the alkali leaching residue were separated using magnetic separation to realize the CO2 storage and metal recovery. In this process, the CO2 storage capacity attained 241 kg t−1 BFS and the Al2O3 recovery efficiency was 80.61 %, indicating that an efficient storage of CO2 and Al2O3 extraction were achieved simultaneously. In addition, there was almost no generation of waste slag or waste liquid in this process, which indicated that an environmentally friendly and efficient process for CO2 storage, as well as valuable metal recovery from industrial solid wastes was obtained.

Suggested Citation

  • Yuan, Haitao & Yu, Wenzhou & Wen, Jiale & Yang, Fan & Nyarko-Appiah, Joseph Emmanuel & Bai, Chenguang, 2024. "A new strategy for CO2 storage and Al2O3 recovery from blast furnace slag and coal fly ash by employing vacuum reduction and alkali dissolution methods," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026392
    DOI: 10.1016/j.energy.2024.132865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224026392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kotagodahetti, Ravihari & Hewage, Kasun & Karunathilake, Hirushie & Sadiq, Rehan, 2021. "Evaluating carbon capturing strategies for emissions reduction in community energy systems: A life cycle thinking approach," Energy, Elsevier, vol. 232(C).
    2. Gert Jan Kramer & Martin Haigh, 2009. "No quick switch to low-carbon energy," Nature, Nature, vol. 462(7273), pages 568-569, December.
    3. Mysiak, Jaroslav & Surminski, Swenja & Thieken, Annegret & Mechler, Reinhard & Aerts, Jeroen C. J. H., 2016. "Brief communication: Sendai framework for disaster risk reduction – success or warning sign for Paris?," LSE Research Online Documents on Economics 68267, London School of Economics and Political Science, LSE Library.
    4. Teir, Sebastian & Eloneva, Sanni & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2007. "Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production," Energy, Elsevier, vol. 32(4), pages 528-539.
    5. Chu, Guanrun & Li, Chun & Liu, Weizao & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Wang, Ye & Luo, Dongmei, 2019. "Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process," Energy, Elsevier, vol. 166(C), pages 1314-1322.
    6. Teir, Sebastian & Eloneva, Sanni & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2009. "Fixation of carbon dioxide by producing hydromagnesite from serpentinite," Applied Energy, Elsevier, vol. 86(2), pages 214-218, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    2. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    3. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    4. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    5. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    6. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    7. Gosens, Jorrit, 2017. "Natural resource endowment is not a strong driver of wind or PV development," Renewable Energy, Elsevier, vol. 113(C), pages 1007-1018.
    8. Pan, Shu-Yuan & Eleazar, Elisa G. & Chang, E-E & Lin, Yi-Pin & Kim, Hyunook & Chiang, Pen-Chi, 2015. "Systematic approach to determination of optimum gas-phase mass transfer rate for high-gravity carbonation process of steelmaking slags in a rotating packed bed," Applied Energy, Elsevier, vol. 148(C), pages 23-31.
    9. Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.
    10. Consolación Quintana-Rojo & Fernando E. Callejas-Albiñana & Miguel-Angel Tarancón & Pablo del Río, 2019. "Identifying the Drivers of Wind Capacity Additions: The Case of Spain. A Multiequational Approach," Energies, MDPI, vol. 12(10), pages 1-19, May.
    11. Weijermars, Ruud, 2013. "Economic appraisal of shale gas plays in Continental Europe," Applied Energy, Elsevier, vol. 106(C), pages 100-115.
    12. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    13. Olner, Dan & Mitchell, Gordon & Heppenstall, Alison & Pryce, Gwilym, 2020. "The spatial economics of energy justice: modelling the trade impacts of increased transport costs in a low carbon transition and the implications for UK regional inequality," Energy Policy, Elsevier, vol. 140(C).
    14. Madsen, Dorte Nørgaard & Hansen, Jan Petter, 2019. "Outlook of solar energy in Europe based on economic growth characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Weijermars, Ruud, 2012. "Regulatory reform options to revitalize the US natural gas value chain," Utilities Policy, Elsevier, vol. 21(C), pages 50-58.
    16. Ajay Gambhir & Laurent Drouet & David McCollum & Tamaryn Napp & Dan Bernie & Adam Hawkes & Oliver Fricko & Petr Havlik & Keywan Riahi & Valentina Bosetti & Jason Lowe, 2017. "Assessing the Feasibility of Global Long-Term Mitigation Scenarios," Energies, MDPI, vol. 10(1), pages 1-31, January.
    17. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
    18. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    19. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    20. Eloneva, Sanni & Said, Arshe & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2012. "Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate," Applied Energy, Elsevier, vol. 90(1), pages 329-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.