IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i9p3603-3613.html
   My bibliography  Save this article

Effects of turpentine and gasoline-like fuel obtained from waste lubrication oil on engine performance and exhaust emission

Author

Listed:
  • Arpa, O.
  • Yumrutas, R.
  • Alma, M.H.

Abstract

In this study, an experimental investigation was carried out to determine the effects of gasoline-like fuel (GLF), and its blends with turpentine with ratios of 10%, 20%, and 30% on the performance and emission characteristics of a gasoline engine. The GLF was obtained from waste lubrication engine oil by the method of pyrolitic distillation. Characteristics of the pure GLF and its blends were tested. A series of engine performance and emission tests were conducted using the fuel samples in the test engine. Performance parameters for each test were calculated utilizing measurement values of force exerted on the crank shaft, rate of air and fuel mass flow to the engine and engine speed. Effects of the fuels on the performance parameters, exhaust gas temperature, and emissions of NOx, CO, CO2, and HC were discussed. The results indicated that torque, brake mean effective pressure and thermal efficiency increased but brake specific fuel consumption decreased with increasing amount of turpentine in the GLF sample. The main effect of 10%, 20% and 30% turpentine additions to GLF on pollutant formation was that the NOx ratio increased, whereas that of CO decreased.

Suggested Citation

  • Arpa, O. & Yumrutas, R. & Alma, M.H., 2010. "Effects of turpentine and gasoline-like fuel obtained from waste lubrication oil on engine performance and exhaust emission," Energy, Elsevier, vol. 35(9), pages 3603-3613.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3603-3613
    DOI: 10.1016/j.energy.2010.04.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210002586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.04.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    2. Koç, Mustafa & Sekmen, Yakup & Topgül, Tolga & Yücesu, Hüseyin Serdar, 2009. "The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine," Renewable Energy, Elsevier, vol. 34(10), pages 2101-2106.
    3. Karthikeyan, R. & Mahalakshmi, N.V., 2007. "Performance and emission characteristics of a turpentine–diesel dual fuel engine," Energy, Elsevier, vol. 32(7), pages 1202-1209.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquim Costa & Jorge Martins & Tiago Arantes & Margarida Gonçalves & Luis Durão & Francisco P. Brito, 2021. "Experimental Assessment of the Performance and Emissions of a Spark-Ignition Engine Using Waste-Derived Biofuels as Additives," Energies, MDPI, vol. 14(16), pages 1-19, August.
    2. Suiuay, Chokchai & Katekaew, Somporn & Senawong, Kritsadang & Junsiri, Chaiyan & Srichat, Aphichat & Laloon, Kittipong, 2023. "Production of gasoline and diesel-like fuel from natural rubber scrap: Upgrading of the liquid fuel properties and performance in a spark ignition engine," Energy, Elsevier, vol. 283(C).
    3. Santhoshkumar, A. & Ramanathan, Anand, 2020. "Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine," Energy, Elsevier, vol. 197(C).
    4. Robert Mădălin Chivu & Jorge Martins & Florin Popescu & Krisztina Uzuneanu & Ion V. Ion & Margarida Goncalves & Teodor-Cezar Codău & Elena Onofrei & Francisco P. Brito, 2023. "Turpentine as an Additive for Diesel Engines: Experimental Study on Pollutant Emissions and Engine Performance," Energies, MDPI, vol. 16(13), pages 1-18, July.
    5. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    6. Seong-Min Cho & Chang-Young Hong & Se-Yeong Park & Da-Song Lee & June-Ho Choi & Bonwook Koo & In-Gyu Choi, 2019. "Application of Sulfated Tin (IV) Oxide Solid Superacid Catalyst to Partial Coupling Reaction of α-Pinene to Produce Less Viscous High-Density Fuel," Energies, MDPI, vol. 12(10), pages 1-14, May.
    7. Kasiraman, G. & Nagalingam, B. & Balakrishnan, M., 2012. "Performance, emission and combustion improvements in a direct injection diesel engine using cashew nut shell oil as fuel with camphor oil blending," Energy, Elsevier, vol. 47(1), pages 116-124.
    8. Paweł P. Włodarczyk & Barbara Włodarczyk, 2021. "Applicability of Waste Engine Oil for the Direct Production of Electricity," Energies, MDPI, vol. 14(4), pages 1-11, February.
    9. Lam, Su Shiung & Liew, Rock Keey & Jusoh, Ahmad & Chong, Cheng Tung & Ani, Farid Nasir & Chase, Howard A., 2016. "Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 741-753.
    10. Ballesteros, Rosario & García, Duban & Bustamante, Felipe & Alarcón, Edwin & Lapuerta, Magín, 2020. "Oxyfunctionalized turpentine: Evaluation of properties as automotive fuel," Renewable Energy, Elsevier, vol. 162(C), pages 2210-2219.
    11. Amir Rowhani & Thomas J. Rainey, 2016. "Scrap Tyre Management Pathways and Their Use as a Fuel—A Review," Energies, MDPI, vol. 9(11), pages 1-26, October.
    12. Behçet, Rasim & Yumrutaş, Recep & Oktay, Hasan, 2014. "Effects of fuels produced from fish and cooking oils on performance and emissions of a diesel engine," Energy, Elsevier, vol. 71(C), pages 645-655.
    13. Mohammadi, Pouya & Nikbakht, Ali M. & Tabatabaei, Meisam & Farhadi, Khalil & Mohebbi, Arash & Khatami far, Mehdi, 2012. "Experimental investigation of performance and emission characteristics of DI diesel engine fueled with polymer waste dissolved in biodiesel-blended diesel fuel," Energy, Elsevier, vol. 46(1), pages 596-605.
    14. Gao, Jianbing & Tian, Guohong & Jenner, Phil & Burgess, Max & Emhardt, Simon, 2020. "Preliminary explorations of the performance of a novel small scale opposed rotary piston engine," Energy, Elsevier, vol. 190(C).
    15. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Suiuay, Chokchai & Sudajan, Somposh & Katekaew, Somporn & Senawong, Kritsadang & Laloon, Kittipong, 2019. "Production of gasoline-like-fuel and diesel-like-fuel from hard-resin of Yang (Dipterocarpus alatus) using a fast pyrolysis process," Energy, Elsevier, vol. 187(C).
    17. Kim, Hyun Hee & Park, Yoon Hwa & Han, Karam & Jang, Ji Hoon & Park, Ho Young & Seo, Youn Seog, 2021. "Combustion and emission characteristics of a reprocessed used lubricating oil as a renewable fuel for boiler cold start-up operation," Energy, Elsevier, vol. 222(C).
    18. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    2. Yadav, Prem Shanker & Gautam, Raghvendra & Le, Thanh Tuan & Khandelwal, Neelam & Le, Anh Tuan & Hoang, Anh Tuan, 2024. "A comprehensive analysis of energy, exergy, performance, and emissions of a spark-ignition engine running on blends of gasoline, ethanol, and isoamyl alcohol," Energy, Elsevier, vol. 307(C).
    3. Awad, Omar I. & Mamat, R. & Ibrahim, Thamir K. & Hammid, Ali Thaeer & Yusri, I.M. & Hamidi, Mohd Adnin & Humada, Ali M. & Yusop, A.F., 2018. "Overview of the oxygenated fuels in spark ignition engine: Environmental and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 394-408.
    4. Thakur, Amit Kumar & Kaviti, Ajay Kumar & Mehra, Roopesh & Mer, K.K.S., 2017. "Progress in performance analysis of ethanol-gasoline blends on SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 324-340.
    5. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    6. Liang, Chen & Ji, Changwei & Gao, Binbin, 2013. "Load characteristics of a spark-ignited ethanol engine with DME enrichment," Applied Energy, Elsevier, vol. 112(C), pages 500-506.
    7. Awad, Omar I. & Mamat, R. & Ali, Obed M. & Sidik, N.A.C. & Yusaf, T. & Kadirgama, K. & Kettner, Maurice, 2018. "Alcohol and ether as alternative fuels in spark ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2586-2605.
    8. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    9. Iodice, Paolo & Senatore, Adolfo & Langella, Giuseppe & Amoresano, Amedeo, 2016. "Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation," Applied Energy, Elsevier, vol. 179(C), pages 182-190.
    10. Kroyan, Yuri & Wojcieszyk, Michal & Kaario, Ossi & Larmi, Martti & Zenger, Kai, 2020. "Modeling the end-use performance of alternative fuels in light-duty vehicles," Energy, Elsevier, vol. 205(C).
    11. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    12. Norhisam Misron & Suhairi Rizuan & Aravind Vaithilingam & Nashiren Farzilah Mailah & Hanamoto Tsuyoshi & Yamada Hiroaki & Shirai Yoshihito, 2011. "Performance Improvement of a Portable Electric Generator Using an Optimized Bio-Fuel Ratio in a Single Cylinder Two-Stroke Engine," Energies, MDPI, vol. 4(11), pages 1-13, November.
    13. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    14. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    15. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    16. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    17. Lizárraga-Morazán, Juan Ramón & Picón-Núñez, Martín, 2024. "Optimal design of parabolic through solar collector networks: A design approach for year-round operation," Energy, Elsevier, vol. 306(C).
    18. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    19. Aloisio S. Nascimento Filho & Rafael G. O. dos Santos & João Gabriel A. Calmon & Peterson A. Lobato & Marcelo A. Moret & Thiago B. Murari & Hugo Saba, 2022. "Induction of a Consumption Pattern for Ethanol and Gasoline in Brazil," Sustainability, MDPI, vol. 14(15), pages 1-11, July.
    20. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3603-3613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.