IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p1069-1080.html
   My bibliography  Save this article

An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends

Author

Listed:
  • Renzi, Massimiliano
  • Bietresato, Marco
  • Mazzetto, Fabrizio

Abstract

Bioethanol-gasoline blends represent for Otto-cycle engines a consolidated alternative in the attempts to reduce GHG emissions and to limit the use of fossil fuels. However, the use of alternative fuels can strongly influence the performance of engines.

Suggested Citation

  • Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:1069-1080
    DOI: 10.1016/j.energy.2016.09.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216312920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    2. Topgül, Tolga & Yücesu, Hüseyin Serdar & Çinar, Can & Koca, Atilla, 2006. "The effects of ethanol–unleaded gasoline blends and ignition timing on engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 31(15), pages 2534-2542.
    3. Evcan, Ezgi & Tari, Canan, 2015. "Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product," Energy, Elsevier, vol. 88(C), pages 775-782.
    4. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    5. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part I: Review," Energy, Elsevier, vol. 72(C), pages 1-16.
    6. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    7. Balki, Mustafa Kemal & Sayin, Cenk, 2014. "The effect of compression ratio on the performance, emissions and combustion of an SI (spark ignition) engine fueled with pure ethanol, methanol and unleaded gasoline," Energy, Elsevier, vol. 71(C), pages 194-201.
    8. Liu, Yunyun & Xu, Jingliang & Zhang, Yu & Yuan, Zhenhong & He, Minchao & Liang, Cuiyi & Zhuang, Xinshu & Xie, Jun, 2015. "Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF," Energy, Elsevier, vol. 90(P1), pages 1199-1205.
    9. Park, Su Han & Cha, Junepyo & Kim, Hyung Jun & Lee, Chang Sik, 2012. "Effect of early injection strategy on spray atomization and emission reduction characteristics in bioethanol blended diesel fueled engine," Energy, Elsevier, vol. 39(1), pages 375-387.
    10. Choi, In Seong & Kim, Young Gyu & Jung, Ja Kyun & Bae, Hyeun-Jong, 2015. "Soybean waste (okara) as a valorization biomass for the bioethanol production," Energy, Elsevier, vol. 93(P2), pages 1742-1747.
    11. Bayraktar, Hakan, 2005. "Experimental and theoretical investigation of using gasoline–ethanol blends in spark-ignition engines," Renewable Energy, Elsevier, vol. 30(11), pages 1733-1747.
    12. Wen, Pei-Ling & Lin, Jin-Xu & Lin, Shih-Mo & Feng, Chun-Chiang & Ko, Fu-Kuang, 2015. "Optimal production of cellulosic ethanol from Taiwan's agricultural waste," Energy, Elsevier, vol. 89(C), pages 294-304.
    13. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    14. Silva Ortiz, Pablo & de Oliveira, Silvio, 2014. "Exergy analysis of pretreatment processes of bioethanol production based on sugarcane bagasse," Energy, Elsevier, vol. 76(C), pages 130-138.
    15. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part II: Experimental study," Energy, Elsevier, vol. 72(C), pages 17-34.
    16. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    17. Gravalos, I. & Moshou, D. & Gialamas, Th. & Xyradakis, P. & Kateris, D. & Tsiropoulos, Z., 2013. "Emissions characteristics of spark ignition engine operating on lower–higher molecular mass alcohol blended gasoline fuels," Renewable Energy, Elsevier, vol. 50(C), pages 27-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altın, İsmail & Bilgin, Atilla & Çeper, Bilge Albayrak, 2017. "Parametric study on some combustion characteristics in a natural gas fueled dual plug SI engine," Energy, Elsevier, vol. 139(C), pages 1237-1242.
    2. da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
    3. Li, Bo & Zhong, Fei & Wang, Ruixin & Jiang, Yankun & Chen, Yexin, 2024. "Experimental and numerical study on a SI engine fueled with gasohol and dissociated methanol gas blends at lean conditions," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thakur, Amit Kumar & Kaviti, Ajay Kumar & Mehra, Roopesh & Mer, K.K.S., 2017. "Progress in performance analysis of ethanol-gasoline blends on SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 324-340.
    2. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    3. Al-Harbi, Ahmed A. & Alabduly, Abdullah J. & Alkhedhair, Abdullah M. & Alqahtani, Naif B. & Albishi, Miqad S., 2022. "Effect of operation under lean conditions on NOx emissions and fuel consumption fueling an SI engine with hydrous ethanol–gasoline blends enhanced with synthesis gas," Energy, Elsevier, vol. 238(PA).
    4. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Awad, Omar I. & Mamat, R. & Ali, Obed M. & Sidik, N.A.C. & Yusaf, T. & Kadirgama, K. & Kettner, Maurice, 2018. "Alcohol and ether as alternative fuels in spark ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2586-2605.
    6. Muhamad Norkhizan Abdullah & Ahmad Fitri Yusop & Rizalman Mamat & Mohd Adnin Hamidi & Kumarasamy Sudhakar & Talal Yusaf, 2023. "Sustainable Biofuels from First Three Alcohol Families: A Critical Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    7. Gong, Changming & Liu, Fenghua & Sun, Jingzhen & Wang, Kang, 2016. "Effect of compression ratio on performance and emissions of a stratified-charge DISI (direct injection spark ignition) methanol engine," Energy, Elsevier, vol. 96(C), pages 166-175.
    8. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    9. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    10. Ali Qasemian & Sina Jenabi Haghparast & Pouria Azarikhah & Meisam Babaie, 2021. "Effects of Compression Ratio of Bio-Fueled SI Engines on the Thermal Balance and Waste Heat Recovery Potential," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    11. Carbot-Rojas, D.A. & Escobar-Jiménez, R.F. & Gómez-Aguilar, J.F. & Téllez-Anguiano, A.C., 2017. "A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1070-1085.
    12. Lee, Sanghoon & Lee, Chang Sik & Park, Sungwook & Gupta, Jai Gopal & Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2017. "Spray characteristics, engine performance and emissions analysis for Karanja biodiesel and its blends," Energy, Elsevier, vol. 119(C), pages 138-151.
    13. Dhande, D.Y. & Nighot, D.V. & Sinaga, Nazaruddin & Dahe, Kiran B., 2021. "Extraction of bioethanol from waste pomegranate fruits as a potential feedstock and its blending effects on a performance of a single cylinder SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Juan E. Tibaquirá & José I. Huertas & Sebastián Ospina & Luis F. Quirama & José E. Niño, 2018. "The Effect of Using Ethanol-Gasoline Blends on the Mechanical, Energy and Environmental Performance of In-Use Vehicles," Energies, MDPI, vol. 11(1), pages 1-17, January.
    15. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    16. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    17. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    18. Süleyman Şimşek & Hasan Saygın & Bülent Özdalyan, 2020. "Improvement of Fusel Oil Features and Effect of Its Use in Different Compression Ratios for an SI Engine on Performance and Emission," Energies, MDPI, vol. 13(7), pages 1-14, April.
    19. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    20. S. M. Ashrafur Rahman & Md. Nurun Nabi & Thuy Chu Van & Kabir Suara & Mohammad Jafari & Ashley Dowell & Md. Aminul Islam & Anthony J. Marchese & Jessica Tryner & Md. Farhad Hossain & Thomas J. Rainey , 2018. "Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends," Energies, MDPI, vol. 11(4), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:1069-1080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.