IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224030160.html
   My bibliography  Save this article

A novel approach to energy management in the dairy industry using performance indicators and load profiles: Application to a cheese dairy plant in Tuscany, Italy

Author

Listed:
  • Miserocchi, Lorenzo
  • Franco, Alessandro
  • Testi, Daniele

Abstract

The available energy monitoring information in the dairy industry reveals significant gaps regarding the impact of operational factors on performance indicators and the generation of typical days from load profiles. This paper presents a method for predicting performance indicators and load profiles in the dairy industry based on multiple regression and clustering. The method is applied to a cheese dairy plant located in Tuscany, Italy, providing actionable insights for energy efficiency and renewable integration. With regard to performance indicators, predictions using multiple regression achieved accuracies within 8 % for electricity consumption and within 20 % for steam generation, mainly due to limited data availability. The combination of k-means clustering with multiple regression yielded an overall accuracy within approximately 10 % for electricity load profiles, enabling the labelling of clusters based on production and meteorological variables. The analysis of improved production planning and the compatibility of energy demand with solar resources showed potential reductions in the electrical performance indicator by 27 % and self-consumption rates between 14 % and 42 %, respectively. Validation with data from other dairy contexts confirms the accuracy of the method and the considerable potential for improvement, suggesting further implementation towards effective energy management in the dairy industry.

Suggested Citation

  • Miserocchi, Lorenzo & Franco, Alessandro & Testi, Daniele, 2024. "A novel approach to energy management in the dairy industry using performance indicators and load profiles: Application to a cheese dairy plant in Tuscany, Italy," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030160
    DOI: 10.1016/j.energy.2024.133240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    2. Philipp, Matthias & Schumm, Gregor & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J. & Schlosser, Florian & Hesselbach, Jens, 2018. "Optimal energy supply structures for industrial food processing sites in different countries considering energy transitions," Energy, Elsevier, vol. 146(C), pages 112-123.
    3. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry," Energy, Elsevier, vol. 31(12), pages 1984-2004.
    4. Houston, Carrie & Gyamfi, Samuel & Whale, Jonathan, 2014. "Evaluation of energy efficiency and renewable energy generation opportunities for small scale dairy farms: A case study in Prince Edward Island, Canada," Renewable Energy, Elsevier, vol. 67(C), pages 20-29.
    5. Singh, Gurjeet & Singh, P.J. & Tyagi, V.V. & Barnwal, P. & Pandey, A.K., 2019. "Exergy and thermo-economic analysis of ghee production plant in dairy industry," Energy, Elsevier, vol. 167(C), pages 602-618.
    6. Atkins, Martin J. & Walmsley, Michael R.W. & Morrison, Andrew S., 2010. "Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes," Energy, Elsevier, vol. 35(5), pages 1867-1873.
    7. Chinese, D. & Orrù, P.F. & Meneghetti, A. & Cortella, G. & Giordano, L. & Benedetti, M., 2022. "Symbiotic and optimized energy supply for decarbonizing cheese production: An Italian case study," Energy, Elsevier, vol. 257(C).
    8. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    9. Kalantzis, F. & Revoltella, D., 2019. "Do energy audits help SMEs to realize energy-efficiency opportunities?," Energy Economics, Elsevier, vol. 83(C), pages 229-239.
    10. Jafaryani Jokandan, Majid & Aghbashlo, Mortaza & Mohtasebi, Seyed Saeid, 2015. "Comprehensive exergy analysis of an industrial-scale yogurt production plant," Energy, Elsevier, vol. 93(P2), pages 1832-1851.
    11. Anna Sandhaas & Hanhee Kim & Niklas Hartmann, 2022. "Methodology for Generating Synthetic Load Profiles for Different Industry Types," Energies, MDPI, vol. 15(10), pages 1-29, May.
    12. Arkaitz Usubiaga‐Liaño & Paul Behrens & Vassilis Daioglou, 2020. "Energy use in the global food system," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 830-840, August.
    13. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    14. Breen, M. & Upton, J. & Murphy, M.D., 2020. "Photovoltaic systems on dairy farms: Financial and renewable multi-objective optimization (FARMOO) analysis," Applied Energy, Elsevier, vol. 278(C).
    15. Wallerand, Anna S. & Kermani, Maziar & Voillat, Régis & Kantor, Ivan & Maréchal, François, 2018. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy," Renewable Energy, Elsevier, vol. 128(PB), pages 565-585.
    16. Sanna Uski & Erkka Rinne & Janne Sarsama, 2018. "Microgrid as a Cost-Effective Alternative to Rural Network Underground Cabling for Adequate Reliability," Energies, MDPI, vol. 11(8), pages 1-16, July.
    17. Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
    18. Xu, Tengfang & Flapper, Joris, 2009. "Energy use and implications for efficiency strategies in global fluid-milk processing industry," Energy Policy, Elsevier, vol. 37(12), pages 5334-5341, December.
    19. Bühler, Fabian & Nguyen, Tuong-Van & Jensen, Jonas Kjær & Holm, Fridolin Müller & Elmegaard, Brian, 2018. "Energy, exergy and advanced exergy analysis of a milk processing factory," Energy, Elsevier, vol. 162(C), pages 576-592.
    20. Trienekens, Jacques & Zuurbier, Peter, 2008. "Quality and safety standards in the food industry, developments and challenges," International Journal of Production Economics, Elsevier, vol. 113(1), pages 107-122, May.
    21. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    22. Xu, Tengfang & Flapper, Joris, 2011. "Reduce energy use and greenhouse gas emissions from global dairy processing facilities," Energy Policy, Elsevier, vol. 39(1), pages 234-247, January.
    23. Mateo Jesper & Felix Pag & Klaus Vajen & Ulrike Jordan, 2022. "Heat Load Profiles in Industry and the Tertiary Sector: Correlation with Electricity Consumption and Ex Post Modeling," Sustainability, MDPI, vol. 14(7), pages 1-32, March.
    24. Dowlati, Majid & Aghbashlo, Mortaza & Mojarab Soufiyan, Mohamad, 2017. "Exergetic performance analysis of an ice-cream manufacturing plant: A comprehensive survey," Energy, Elsevier, vol. 123(C), pages 445-459.
    25. Alessandro Franco, 2020. "Methods for the Sustainable Design of Solar Energy Systems for Industrial Process Heat," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    26. Lucio Enrico Zavanella & Beatrice Marchi & Simone Zanoni & Ivan Ferretti, 2019. "Energy considerations for the economic production quantity and the joint economic lot sizing," Journal of Business Economics, Springer, vol. 89(7), pages 845-865, September.
    27. Quijera, José Antonio & Alriols, María González & Labidi, Jalel, 2011. "Integration of a solar thermal system in a dairy process," Renewable Energy, Elsevier, vol. 36(6), pages 1843-1853.
    28. Hyungah Lee & Dongju Kim & Jae-Hoi Gu, 2023. "Prediction of Food Factory Energy Consumption Using MLP and SVR Algorithms," Energies, MDPI, vol. 16(3), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masera, Kemal & Tannous, Hadi & Stojceska, Valentina & Tassou, Savvas, 2023. "An investigation of the recent advances of the integration of solar thermal energy systems to the dairy processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    2. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Lombardi, Pio Alessandro & Wasser, Hannes Peter & Pantaleo, Antonio Marco, 2024. "Flexibility exploitation in Net-Zero Energy Factories. A technical and economic study case for dairy systems located in Central and South Europe," Renewable Energy, Elsevier, vol. 234(C).
    4. Martínez-Rodríguez, Guillermo & Fuentes-Silva, Amanda L. & Velázquez-Torres, Daniel & Picón-Núñez, Martín, 2022. "Comprehensive solar thermal integration for industrial processes," Energy, Elsevier, vol. 239(PD).
    5. Dario Friso & Lucia Bortolini & Federica Tono, 2020. "Exergetic Analysis and Exergy Loss Reduction in the Milk Pasteurization for Italian Cheese Production," Energies, MDPI, vol. 13(3), pages 1-16, February.
    6. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    7. Gurjeet Singh & K. Chopra & V. V. Tyagi & A. K. Pandey & R. K. Sharma & Ahmet Sari, 2022. "Estimation of thermodynamic and enviroeconomic characteristics of khoa (milk food) production unit," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12542-12581, November.
    8. Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Diana L. Tinoco-Caicedo & Alexis Lozano-Medina & Ana M. Blanco-Marigorta, 2020. "Conventional and Advanced Exergy and Exergoeconomic Analysis of a Spray Drying System: A Case Study of an Instant Coffee Factory in Ecuador," Energies, MDPI, vol. 13(21), pages 1-19, October.
    10. Juan R Lizárraga-Morazán & Guillermo Martínez-Rodríguez & Amanda L Fuentes-Silva & Martín Picón-Núñez, 2021. "Selection of solar collector network design for industrial applications subject to economic and operation criteria," Energy & Environment, , vol. 32(8), pages 1504-1523, December.
    11. Xu, Tengfang & Flapper, Joris, 2011. "Reduce energy use and greenhouse gas emissions from global dairy processing facilities," Energy Policy, Elsevier, vol. 39(1), pages 234-247, January.
    12. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    13. Philipp, Matthias & Schumm, Gregor & Heck, Patrick & Schlosser, Florian & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J., 2018. "Increasing energy efficiency of milk product batch sterilisation," Energy, Elsevier, vol. 164(C), pages 995-1010.
    14. Singh, Gurjeet & Tyagi, V.V. & Singh, P.J. & Pandey, A.K., 2020. "Estimation of thermodynamic characteristics for comprehensive dairy food processing plant: An energetic and exergetic approach," Energy, Elsevier, vol. 194(C).
    15. Meyers, Steven & Schmitt, Bastian & Vajen, Klaus, 2018. "Renewable process heat from solar thermal and photovoltaics: The development and application of a universal methodology to determine the more economical technology," Applied Energy, Elsevier, vol. 212(C), pages 1537-1552.
    16. Pirasteh, G. & Saidur, R. & Rahman, S.M.A. & Rahim, N.A., 2014. "A review on development of solar drying applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 133-148.
    17. Gambade, Julien & Noël, Hervé & Glouannec, Patrick & Magueresse, Anthony, 2023. "Numerical model of intermittent solar hot water production," Renewable Energy, Elsevier, vol. 218(C).
    18. Calvin Kong Leng Sing & Jeng Shiun Lim & Timothy Gordon Walmsley & Peng Yen Liew & Masafumi Goto & Sheikh Ahmad Zaki Bin Shaikh Salim, 2020. "Time-Dependent Integration of Solar Thermal Technology in Industrial Processes," Sustainability, MDPI, vol. 12(6), pages 1-32, March.
    19. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.