IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i11d10.1007_s10668-021-01954-4.html
   My bibliography  Save this article

Estimation of thermodynamic and enviroeconomic characteristics of khoa (milk food) production unit

Author

Listed:
  • Gurjeet Singh

    (Punjab Engineering Collage)

  • K. Chopra

    (Shri Mata Vaishno Devi University
    Shri Mata Vaishno Devi University)

  • V. V. Tyagi

    (Shri Mata Vaishno Devi University)

  • A. K. Pandey

    (Sunway University
    Saveetha University)

  • R. K. Sharma

    (Manipal University Jaipur)

  • Ahmet Sari

    (Karadeniz Technical University
    King Fahd University of Petroleum & Minerals (KFUPM))

Abstract

India’s annual Khoa (Heat Desiccated Milk Food) production was approximately estimated as 7.58 × 106 MT in the year 2019. The khoa is consumed in huge quantities for preparing Indian sweets and; the magnitudes of steam (2365 kg/MT) and electricity (89.23kWh/MT) consumptions in this activity are quite high. In view of this, the present research is an effort to summarize the main derivatives from thermodynamic as well as enviroeconomic analysis of a khoa production unit along with comprehensive assessment, pertaining to mitigation of harmful emissions post adoption of clean energy solution (PV Panels). The aforementioned approaches provide detailed information about qualitative and quantitative aspects of energy consumptions, destructions and improvement potentials along with clear information about mitigation of CO2 (840 Tonnes) during lifetime operation of unit. The exergy efficiency and specific exergy destruction for khoa production unit were enumerated as 26.80% and 665.90 kJ/kg, respectively. The energy efficiency, exergy efficiency, energy improvement potential and exergy improvement potential of steam generation unit vary in the range of approximately 22–99%, 0.25–94%, 0.06–490 kW and 2–15098 kW, respectively; while on the other hand energy efficiency, exergy efficiency, energy improvement potential and exergy improvement potential of khoa production unit found to be in the range of approximately 40–99%, 25–88%, 0.01–38 kW and 0.001–14 kW, respectively. The investment made (10,737 $) for production of clean energy (electricity) will generate an approximate economic saving of 4500 USD/year with a payback period of 6.8 years in line with revenue attainment of 12,180 $ for the lifetime operation of unit.

Suggested Citation

  • Gurjeet Singh & K. Chopra & V. V. Tyagi & A. K. Pandey & R. K. Sharma & Ahmet Sari, 2022. "Estimation of thermodynamic and enviroeconomic characteristics of khoa (milk food) production unit," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12542-12581, November.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:11:d:10.1007_s10668-021-01954-4
    DOI: 10.1007/s10668-021-01954-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01954-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01954-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bühler, Fabian & Nguyen, Tuong-Van & Jensen, Jonas Kjær & Holm, Fridolin Müller & Elmegaard, Brian, 2018. "Energy, exergy and advanced exergy analysis of a milk processing factory," Energy, Elsevier, vol. 162(C), pages 576-592.
    2. Yildirim, Nurdan & Genc, Seda, 2015. "Thermodynamic analysis of a milk pasteurization process assisted by geothermal energy," Energy, Elsevier, vol. 90(P1), pages 987-996.
    3. Jozaalizadeh, Toomaj & Toghraie, Davood, 2019. "Numerical investigation behavior of reacting flow for flameless oxidation technology of MILD combustion: Effect of fluctuating temperature of inlet co-flow," Energy, Elsevier, vol. 178(C), pages 530-537.
    4. Singh, Gurjeet & Tyagi, V.V. & Singh, P.J. & Pandey, A.K., 2020. "Estimation of thermodynamic characteristics for comprehensive dairy food processing plant: An energetic and exergetic approach," Energy, Elsevier, vol. 194(C).
    5. Hemmat Esfe, Mohammad & Hajmohammad, Hadi & Toghraie, Davood & Rostamian, Hadi & Mahian, Omid & Wongwises, Somchai, 2017. "Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems," Energy, Elsevier, vol. 137(C), pages 160-171.
    6. Singh, Gurjeet & Singh, P.J. & Tyagi, V.V. & Barnwal, P. & Pandey, A.K., 2019. "Exergy and thermo-economic analysis of ghee production plant in dairy industry," Energy, Elsevier, vol. 167(C), pages 602-618.
    7. Dowlati, Majid & Aghbashlo, Mortaza & Mojarab Soufiyan, Mohamad, 2017. "Exergetic performance analysis of an ice-cream manufacturing plant: A comprehensive survey," Energy, Elsevier, vol. 123(C), pages 445-459.
    8. Jafaryani Jokandan, Majid & Aghbashlo, Mortaza & Mohtasebi, Seyed Saeid, 2015. "Comprehensive exergy analysis of an industrial-scale yogurt production plant," Energy, Elsevier, vol. 93(P2), pages 1832-1851.
    9. Gürtürk, Mert & Oztop, Hakan F. & Hepbasli, Arif, 2015. "Comparison of exergoeconomic analysis of two different perlite expansion furnaces," Energy, Elsevier, vol. 80(C), pages 589-598.
    10. Toghraie, Davood & Karami, Amir & Afrand, Masoud & Karimipour, Arash, 2018. "Effects of geometric parameters on the performance of solar chimney power plants," Energy, Elsevier, vol. 162(C), pages 1052-1061.
    11. Dabiri, Soroush & Khodabandeh, Erfan & Poorfar, Alireza Khoeini & Mashayekhi, Ramin & Toghraie, Davood & Abadian Zade, Seyed Ali, 2018. "Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator," Energy, Elsevier, vol. 153(C), pages 17-26.
    12. Hassan, Hamdy & Ahmed, M. Salem & Fathy, Mohamed, 2019. "Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC)," Renewable Energy, Elsevier, vol. 135(C), pages 136-147.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jigar K. Andharia & Sanjay Haldar & Shilpa Samaddar & Subarna Maiti, 2022. "Case study of augmenting livelihood of fishing community at Sagar Island, India, through solar thermal dryer technology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11449-11469, September.
    2. Singh, Gurjeet & Singh, P.J. & Tyagi, V.V. & Barnwal, P. & Pandey, A.K., 2019. "Exergy and thermo-economic analysis of ghee production plant in dairy industry," Energy, Elsevier, vol. 167(C), pages 602-618.
    3. Mohtaram, Soheil & Sun, HongGuang & Lin, Ji & Chen, Wen & Sun, Yonghui, 2020. "Multi-Objective Evolutionary Optimization & 4E analysis of a bulky combined cycle power plant by CO2/ CO/ NOx reduction and cost controlling targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. Singh, Gurjeet & Tyagi, V.V. & Singh, P.J. & Pandey, A.K., 2020. "Estimation of thermodynamic characteristics for comprehensive dairy food processing plant: An energetic and exergetic approach," Energy, Elsevier, vol. 194(C).
    5. Diana L. Tinoco-Caicedo & Alexis Lozano-Medina & Ana M. Blanco-Marigorta, 2020. "Conventional and Advanced Exergy and Exergoeconomic Analysis of a Spray Drying System: A Case Study of an Instant Coffee Factory in Ecuador," Energies, MDPI, vol. 13(21), pages 1-19, October.
    6. Dario Friso & Lucia Bortolini & Federica Tono, 2020. "Exergetic Analysis and Exergy Loss Reduction in the Milk Pasteurization for Italian Cheese Production," Energies, MDPI, vol. 13(3), pages 1-16, February.
    7. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Mojarab Soufiyan, Mohamad & Dadak, Ali & Hosseini, Seyed Sina & Nasiri, Farshid & Dowlati, Majid & Tahmasebi, Maryam & Aghbashlo, Mortaza, 2016. "Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator," Energy, Elsevier, vol. 111(C), pages 910-922.
    9. Shakeri, Alireza & Asadbagi, Poorya & Babamiri Naamrudi, Arash, 2024. "Techno-economic, techno-environmental assessments, and deep learning optimization of an integrated system for CO2 capturing from a gas turbine: Tehran case study," Energy, Elsevier, vol. 306(C).
    10. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    11. Dowlati, Majid & Aghbashlo, Mortaza & Mojarab Soufiyan, Mohamad, 2017. "Exergetic performance analysis of an ice-cream manufacturing plant: A comprehensive survey," Energy, Elsevier, vol. 123(C), pages 445-459.
    12. Hasan Yildizhan & Cihan Yıldırım & Shiva Gorjian & Arman Ameen, 2023. "How May New Energy Investments Change the Sustainability of the Turkish Industrial Sector?," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    13. Aghbashlo, Mortaza & Mandegari, Mohsen & Tabatabaei, Meisam & Farzad, Somayeh & Mojarab Soufiyan, Mohamad & Görgens, Johann F., 2018. "Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production," Energy, Elsevier, vol. 149(C), pages 623-638.
    14. Ma, Guiling & Chen, Yanting & Ndegwa, Pius, 2022. "Anaerobic digestion process deactivates major pathogens in biowaste: A meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Esmanur Uçal & Hasan Yildizhan & Arman Ameen & Zafer Erbay, 2023. "Assessment of Whole Milk Powder Production by a Cumulative Exergy Consumption Approach," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    16. Magdalena Wróbel-Jędrzejewska & Elżbieta Polak, 2023. "Carbon Footprint Analysis of Ice Cream Production," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    17. Aghbashlo, Mortaza & Tabatabaei, Meisam & Khalife, Esmail & Roodbar Shojaei, Taha & Dadak, Ali, 2018. "Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide," Energy, Elsevier, vol. 149(C), pages 967-978.
    18. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    19. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    20. Liu, Jie & Guo, Qiang & Liang, Wenkai & Feng, Xuning & Wang, Hewu, 2024. "On the NTC behaviors in explosion limits of C1 to C3 n-alkane/air mixtures," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:11:d:10.1007_s10668-021-01954-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.