IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp1047-1065.html
   My bibliography  Save this article

Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms

Author

Listed:
  • Wang, Kai
  • Pantaleo, Antonio M.
  • Herrando, María
  • Faccia, Michele
  • Pesmazoglou, Ioannis
  • Franchetti, Benjamin M.
  • Markides, Christos N.

Abstract

Dairy farming is one of the most energy- and emission-intensive industrial sectors, and offers noteworthy opportunities for displacing conventional fossil-fuel consumption both in terms of cost saving and decarbonisation. In this paper, a solar-combined heat and power (S–CHP) system is proposed for dairy-farm applications based on spectral-splitting parabolic-trough hybrid photovoltaic-thermal (PVT) collectors, which is capable of providing simultaneous electricity, steam and hot water for processing milk products. A transient numerical model is developed and validated against experimental data to predict the dynamic thermal and electrical characteristics and to assess the thermoeconomic performance of the S–CHP system. A dairy farm in Bari (Italy), with annual thermal and electrical demands of 6000 MWh and 3500 MWh respectively, is considered as a case study for assessing the energetic and economic potential of the proposed S–CHP system. Hourly simulations are performed over a year using real-time local weather and measured demand-data inputs. The results show that the optical characteristic of the spectrum splitter has a significant influence on the system’s thermoeconomic performance. This is therefore optimised to reflect the solar region between 550 nm and 1000 nm to PV cells for electricity generation and (low-temperature) hot-water production, while directing the rest to solar receivers for (higher-temperature) steam generation. Based on a 10000-m2 installed area, it is found that 52% of the demand for steam generation and 40% of the hot water demand can be satisfied by the PVT S–CHP system, along with a net electrical output amounting to 14% of the farm’s demand. Economic analyses show that the proposed system is economically viable if the investment cost of the spectrum splitter is lower than 75% of the cost of the parabolic trough concentrator (i.e., <1950 €/m2 spectrum splitter) in this application. The influence of utility prices on the system’s economics is also analysed and it is found to be significant. An environmental assessment shows that the system has excellent decarbonisation potential (890 tCO2/year) relative to conventional solutions. Further research efforts should be directed towards the spectrum splitter, and in particular on achieving reductions to the cost of this component, as this leads directly to an increased financial competitiveness of the proposed system.

Suggested Citation

  • Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:1047-1065
    DOI: 10.1016/j.renene.2020.05.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
    2. Ramos, Alba & Chatzopoulou, Maria Anna & Freeman, James & Markides, Christos N., 2018. "Optimisation of a high-efficiency solar-driven organic Rankine cycle for applications in the built environment," Applied Energy, Elsevier, vol. 228(C), pages 755-765.
    3. Atkins, Martin J. & Walmsley, Michael R.W. & Morrison, Andrew S., 2010. "Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes," Energy, Elsevier, vol. 35(5), pages 1867-1873.
    4. Herrando, María & Markides, Christos N. & Hellgardt, Klaus, 2014. "A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance," Applied Energy, Elsevier, vol. 122(C), pages 288-309.
    5. Brekke, Nick & Dale, John & DeJarnette, Drew & Hari, Parameswar & Orosz, Matthew & Roberts, Kenneth & Tunkara, Ebrima & Otanicar, Todd, 2018. "Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption," Renewable Energy, Elsevier, vol. 123(C), pages 683-693.
    6. Breen, M. & Murphy, M.D. & Upton, J., 2019. "Development of a dairy multi-objective optimization (DAIRYMOO) method for economic and environmental optimization of dairy farms," Applied Energy, Elsevier, vol. 242(C), pages 1697-1711.
    7. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2015. "An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications," Applied Energy, Elsevier, vol. 138(C), pages 605-620.
    8. Guarracino, Ilaria & Freeman, James & Ramos, Alba & Kalogirou, Soteris A. & Ekins-Daukes, Nicholas J. & Markides, Christos N., 2019. "Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions," Applied Energy, Elsevier, vol. 240(C), pages 1014-1030.
    9. Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
    10. Ling, Yunyi & Li, Wenjia & Jin, Jian & Yu, Yuhang & Hao, Yong & Jin, Hongguang, 2020. "A spectral-splitting photovoltaic-thermochemical system for energy storage and solar power generation," Applied Energy, Elsevier, vol. 260(C).
    11. Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
    12. An, Wei & Wu, Jinrui & Zhu, Tong & Zhu, Qunzhi, 2016. "Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter," Applied Energy, Elsevier, vol. 184(C), pages 197-206.
    13. Wallerand, Anna S. & Kermani, Maziar & Voillat, Régis & Kantor, Ivan & Maréchal, François, 2018. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy," Renewable Energy, Elsevier, vol. 128(PB), pages 565-585.
    14. Crisostomo, Felipe & Taylor, Robert A. & Zhang, Tian & Perez-Wurfl, Ivan & Rosengarten, Gary & Everett, Vernie & Hawkes, Evatt R., 2014. "Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector," Renewable Energy, Elsevier, vol. 72(C), pages 79-87.
    15. Crisostomo, Felipe & Taylor, Robert A. & Surjadi, Desiree & Mojiri, Ahmad & Rosengarten, Gary & Hawkes, Evatt R., 2015. "Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector," Applied Energy, Elsevier, vol. 141(C), pages 238-246.
    16. Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
    17. Looser, R. & Vivar, M. & Everett, V., 2014. "Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPV-T beam-splitting applications," Applied Energy, Elsevier, vol. 113(C), pages 1496-1511.
    18. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    19. Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
    20. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2017. "Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK," Applied Energy, Elsevier, vol. 186(P3), pages 291-303.
    21. Joshi, Sandeep S. & Dhoble, Ashwinkumar S., 2018. "Photovoltaic -Thermal systems (PVT): Technology review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 848-882.
    22. Quijera, José Antonio & Alriols, María González & Labidi, Jalel, 2011. "Integration of a solar thermal system in a dairy process," Renewable Energy, Elsevier, vol. 36(6), pages 1843-1853.
    23. Crisostomo, Felipe & Hjerrild, Natasha & Mesgari, Sara & Li, Qiyuan & Taylor, Robert A., 2017. "A hybrid PV/T collector using spectrally selective absorbing nanofluids," Applied Energy, Elsevier, vol. 193(C), pages 1-14.
    24. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    25. Herrando, María & Markides, Christos N., 2016. "Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations," Applied Energy, Elsevier, vol. 161(C), pages 512-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Ning & Wang, Jiangjiang, 2024. "Solar full spectrum management in low and medium temperature light-driven chemical hydrogen synthesis - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Pu, Jihong & Shen, Chao & Lu, Lin, 2023. "Investigating the annual energy-saving and energy-output behaviors of a novel liquid-flow window with spectral regulation of ATO nanofluids," Energy, Elsevier, vol. 283(C).
    3. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
    5. Song, Jian & Wang, Yaxiong & Wang, Kai & Wang, Jiangfeng & Markides, Christos N., 2021. "Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: Thermoeconomic assessment of various configurations," Renewable Energy, Elsevier, vol. 174(C), pages 1020-1035.
    6. Xia, Xiaokang & Cao, Xuhui & Li, Niansi & Yu, Bendong & Liu, Huifang & Jie ji,, 2023. "Study on a spectral splitting photovoltaic/thermal system based on CNT/Ag mixed nanofluids," Energy, Elsevier, vol. 271(C).
    7. Acosta-Pazmiño, Iván P. & Rivera-Solorio, C.I. & Gijón-Rivera, M., 2022. "Hybridization of a parabolic trough-based thermal plant for industrial heat and power generation," Renewable Energy, Elsevier, vol. 191(C), pages 961-973.
    8. Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
    9. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    10. B, Prabhu & A, Valan Arasu & P, Gurusamy & A, Amala Mithin Minther Singh & T, Arunkumar, 2024. "Solar photovoltaic cooling using Paraffin phase change material: Comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    11. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Pu, Jihong, 2022. "Feasibility investigation of spectral splitting photovoltaic /thermal systems for domestic space heating," Renewable Energy, Elsevier, vol. 192(C), pages 231-242.
    12. Zhang, Chunxiao & Chen, Lei & Zhou, Ziqi & Wang, Zhanwei & Wang, Lin & Wei, Wenzhe, 2023. "Heat harvesting characteristics of building façades integrated photovoltaic /thermal-heat pump system in winter," Renewable Energy, Elsevier, vol. 215(C).
    13. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Gu, Meng & Guo, Qi & Lu, Shiliang, 2022. "Feasibility analysis of energy-saving potential of the underground ice rink using spectrum splitting sunshade technology," Renewable Energy, Elsevier, vol. 191(C), pages 571-579.
    15. Xing, Xueli & Xin, Yu & Sun, Fan & Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2021. "Test of a spectral splitting prototype hybridizing photovoltaic and solar syngas power generation," Applied Energy, Elsevier, vol. 304(C).
    16. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Iván Acosta-Pazmiño & Carlos Rivera-Solorio & Miguel Gijón-Rivera, 2020. "Energetic and Economic Analyses of an LCPV/T Solar Hybrid Plant for a Sports Center Building in Mexico," Energies, MDPI, vol. 13(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
    3. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
    5. Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
    6. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
    8. Xia, Xiaokang & Wei, Wei & Yu, Bendong & Li, Niansi & Ji, Jie, 2024. "Experiment and numerical investigation on a spectral splitting PV/T system for electrical energy and thermal output," Energy, Elsevier, vol. 288(C).
    9. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    10. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    11. Qiu, Huichong & Liu, Hui & Xia, Qi & Lin, Zihan & Chen, Chen, 2024. "A spectral splitting CPV/T hybrid system based on wave-selecting filter coated compound parabolic concentrator and linear Fresnel reflector concentrator," Renewable Energy, Elsevier, vol. 226(C).
    12. Han, Xinyue & Zhao, Xiaobo & Chen, Xiaobin, 2020. "Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling," Renewable Energy, Elsevier, vol. 162(C), pages 55-70.
    13. Han, Xinyue & Zhao, Xiaobo & Huang, Ju & Qu, Jian, 2022. "Optical properties optimization of plasmonic nanofluid to enhance the performance of spectral splitting photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 188(C), pages 573-587.
    14. Huaxu, Liang & Fuqiang, Wang & Dong, Zhang & Ziming, Cheng & Chuanxin, Zhang & Bo, Lin & Huijin, Xu, 2020. "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system," Energy, Elsevier, vol. 194(C).
    15. Herrando, María & Ramos, Alba & Zabalza, Ignacio & Markides, Christos N., 2019. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors," Applied Energy, Elsevier, vol. 235(C), pages 1583-1602.
    16. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    17. Han, Xinyue & Chen, Xiaobin & Sun, Yao & Qu, Jian, 2020. "Performance improvement of a PV/T system utilizing Ag/CoSO4-propylene glycol nanofluid optical filter," Energy, Elsevier, vol. 192(C).
    18. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland & Kirk, Alexander & Osowski, Mark & Cygan, David & Abbasi, Hamid, 2019. "Theoretical and experimental performance of a two-stage (50X) hybrid spectrum splitting solar collector tested to 600 °C," Applied Energy, Elsevier, vol. 239(C), pages 514-525.
    19. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Xiao, Yang & Tian, Wenshuang & Yu, Linfeng & Chen, Meijie & Zheng, Xiong & Qin, Guangzhao, 2024. "Tunable optical properties of ATO-CuO hybrid nanofluids and the application as spectral beam splitters," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:1047-1065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.