IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p750-d318237.html
   My bibliography  Save this article

Exergetic Analysis and Exergy Loss Reduction in the Milk Pasteurization for Italian Cheese Production

Author

Listed:
  • Dario Friso

    (Department of Land, Environment, Agriculture and Forestry, University of Padova, Agripolis, Viale dell’Università 16, 35020 Legnaro, Italy)

  • Lucia Bortolini

    (Department of Land, Environment, Agriculture and Forestry, University of Padova, Agripolis, Viale dell’Università 16, 35020 Legnaro, Italy)

  • Federica Tono

    (ITS Academy—Agroalimentare Veneto, Viale XXVIII Aprile 22, 31015 Conegliano, Italy)

Abstract

The cheese industry has high energy consumption, and improvements to plant efficiency may lead to a reduction of its environmental impact. A survey on a sample of small-medium Italian cheese factories was carried out in order to assess the efficiency of heat recovery of the milk pasteurization equipment for the cheese production. Then, an exergetic analysis to calculate the related exergy loss was carried out together with a cost-benefit analysis to identify the optimized value of the heat efficiency. The exergy loss reduction was determined throughout an exergy analysis that takes into account this last value and the comparison with the previous exergy losses. Finally, the feasibility and the consequent additional reduction of exergy losses were verified, if a cogeneration heat and power (CHP) combined to the pasteurization equipment is assumed. Results show a current heat recovery efficiency of 93.2% in the Italian cheese factories; a close connection between the exergetic losses and the efficiency of the heat recovery exchanger; the optimized recovery efficiency equal to 97.3% obtained from the cost-benefit analysis; a related important exergetic loss reduction of −45% in the heat exchangers, as a second result of the exergetic analysis; a similar reduction of the exergy loss (−42%) of the whole system, as a third result of the exergetic analysis; a total exergy loss reduction of 22.9 kJ kg −1 milk , which corresponds to a lower environmental impact due to CO 2 reduction; a further reduction of the exergy loss of −10% when the cogeneration heat and power CHP are used.

Suggested Citation

  • Dario Friso & Lucia Bortolini & Federica Tono, 2020. "Exergetic Analysis and Exergy Loss Reduction in the Milk Pasteurization for Italian Cheese Production," Energies, MDPI, vol. 13(3), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:750-:d:318237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/750/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/750/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry," Energy, Elsevier, vol. 31(12), pages 1984-2004.
    2. Peng Hu & Gao-Wei Zhang & Long-Xiang Chen & Ming-Hou Liu, 2017. "Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems," Energies, MDPI, vol. 10(2), pages 1-15, February.
    3. Jafaryani Jokandan, Majid & Aghbashlo, Mortaza & Mohtasebi, Seyed Saeid, 2015. "Comprehensive exergy analysis of an industrial-scale yogurt production plant," Energy, Elsevier, vol. 93(P2), pages 1832-1851.
    4. Qinglin Cheng & Yifan Gan & Wenkun Su & Yang Liu & Wei Sun & Ying Xu, 2017. "Research on Exergy Flow Composition and Exergy Loss Mechanisms for Waxy Crude Oil Pipeline Transport Processes," Energies, MDPI, vol. 10(12), pages 1-20, November.
    5. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    6. Xu, Tengfang & Flapper, Joris, 2009. "Energy use and implications for efficiency strategies in global fluid-milk processing industry," Energy Policy, Elsevier, vol. 37(12), pages 5334-5341, December.
    7. Bühler, Fabian & Nguyen, Tuong-Van & Jensen, Jonas Kjær & Holm, Fridolin Müller & Elmegaard, Brian, 2018. "Energy, exergy and advanced exergy analysis of a milk processing factory," Energy, Elsevier, vol. 162(C), pages 576-592.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miserocchi, Lorenzo & Franco, Alessandro & Testi, Daniele, 2024. "A novel approach to energy management in the dairy industry using performance indicators and load profiles: Application to a cheese dairy plant in Tuscany, Italy," Energy, Elsevier, vol. 310(C).
    2. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    3. Diana L. Tinoco-Caicedo & Alexis Lozano-Medina & Ana M. Blanco-Marigorta, 2020. "Conventional and Advanced Exergy and Exergoeconomic Analysis of a Spray Drying System: A Case Study of an Instant Coffee Factory in Ecuador," Energies, MDPI, vol. 13(21), pages 1-19, October.
    4. Xu, Tengfang & Flapper, Joris, 2011. "Reduce energy use and greenhouse gas emissions from global dairy processing facilities," Energy Policy, Elsevier, vol. 39(1), pages 234-247, January.
    5. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    6. Singh, Gurjeet & Tyagi, V.V. & Singh, P.J. & Pandey, A.K., 2020. "Estimation of thermodynamic characteristics for comprehensive dairy food processing plant: An energetic and exergetic approach," Energy, Elsevier, vol. 194(C).
    7. Gurjeet Singh & K. Chopra & V. V. Tyagi & A. K. Pandey & R. K. Sharma & Ahmet Sari, 2022. "Estimation of thermodynamic and enviroeconomic characteristics of khoa (milk food) production unit," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12542-12581, November.
    8. repec:ers:journl:v:xxiv:y:2021:i:special1:p:1010-1033 is not listed on IDEAS
    9. Esmanur Uçal & Hasan Yildizhan & Arman Ameen & Zafer Erbay, 2023. "Assessment of Whole Milk Powder Production by a Cumulative Exergy Consumption Approach," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    10. Yong Wang & Nan Wei & Dejun Wan & Shouxi Wang & Zongming Yuan, 2019. "Numerical Simulation for Preheating New Submarine Hot Oil Pipelines," Energies, MDPI, vol. 12(18), pages 1-26, September.
    11. Piotr Bórawski & Marta Guth & Andrzej Parzonko & Tomasz Rokicki & Aleksandra Perkowska & James William Dunn, 2021. "Price volatility of milk and dairy products in Poland after accession to the EU," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(3), pages 111-119.
    12. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko & Grossmann, Ignacio E. & Maréchal, François & Čuček, Lidija & Kermani, Maziar, 2018. "Simultaneous optimisation and heat integration of evaporation systems including mechanical vapour recompression and background process," Energy, Elsevier, vol. 158(C), pages 1160-1191.
    13. Athari, Hassan & Soltani, Saeed & Seyed Mahmoudi, Seyed Mohammad & Rosen, Marc A. & Morosuk, Tatiana, 2014. "Exergoeconomic analysis of a biomass post-firing combined-cycle power plant," Energy, Elsevier, vol. 77(C), pages 553-561.
    14. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    15. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    17. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    18. Aneta Bełdycka-Bórawska & Piotr Bórawski & Marta Guth & Andrzej Parzonko & Tomasz Rokicki & Bogdan Klepacki & Marcin Wysokiński & Agnieszka Maciąg & James William Dunn, 2021. "Price changes of dairy products in the European Union," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(9), pages 373-381.
    19. Park, Hansaem & Kim, Min Soo, 2016. "Performance analysis of sequential Carnot cycles with finite heat sources and heat sinks and its application in organic Rankine cycles," Energy, Elsevier, vol. 99(C), pages 1-9.
    20. Singh, Bindeshwar & Mukherjee, V. & Tiwari, Prabhakar, 2015. "A survey on impact assessment of DG and FACTS controllers in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 846-882.
    21. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:750-:d:318237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.