IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222027827.html
   My bibliography  Save this article

Combined experimental-numerical analysis of hydrogen as a combustion enhancer applied to wankel engine

Author

Listed:
  • Shi, Cheng
  • Chai, Sen
  • Di, Liming
  • Ji, Changwei
  • Ge, Yunshan
  • Wang, Huaiyu

Abstract

Hydrogen is regarded as one of the most potential alternatives for high-efficiency and eco-friendly combustion. The influences of hydrogen fractions and equivalence ratios on chamber pressure, combustion phases, wall heat loss, brake thermal efficiency, and cyclic fluctuation of Wankel engines were studied by testbench measurement. The intrinsic mechanisms of these effects were analyzed through numerical investigation. Results indicated that increasing hydrogen fraction increased the mass fraction of high-temperature regions, the timings taken for formations of intermediate products were advanced, and the peak H2O2 and CH2O reduced while OH concentration increased. These factors were responsible for increased chamber pressure and the shortened flame development and propagation periods in experiments. A close inverse relationship can be drawn between the wall heat loss and brake thermal efficiency with respect to hydrogen addition. A larger hydrogen fraction coupled with a smaller equivalence ratio manifested lower wall heat loss and higher thermal efficiency. Compared with hydrogen-free regimes, brake thermal efficiency of 6% hydrogen fraction was increased by 64.6%. There was a positive proportional correspondence between the initial flame development and cycle-to-cycle fluctuation. Increasing the hydrogen content caused the enhanced turbulent intensity during the initial combustion stage, which contributed to the stability improvement of engine operations.

Suggested Citation

  • Shi, Cheng & Chai, Sen & Di, Liming & Ji, Changwei & Ge, Yunshan & Wang, Huaiyu, 2023. "Combined experimental-numerical analysis of hydrogen as a combustion enhancer applied to wankel engine," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027827
    DOI: 10.1016/j.energy.2022.125896
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Ge, Yunshan & Meng, Hao & Yang, Jinxin & Chang, Ke & Wang, Shuofeng, 2022. "Comparison and evaluation of advanced machine learning methods for performance and emissions prediction of a gasoline Wankel rotary engine," Energy, Elsevier, vol. 248(C).
    2. Wang, Huaiyu & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan, 2022. "Towards a comprehensive optimization of the intake characteristics for side ported Wankel rotary engines by coupling machine learning with genetic algorithm," Energy, Elsevier, vol. 261(PB).
    3. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Pan, Zhenhua & Bani, Stephen & Chen, Wei & He, Ren, 2017. "Combined effect of injection timing and injection angle on mixture formation and combustion process in a direct injection (DI) natural gas rotary engine," Energy, Elsevier, vol. 128(C), pages 519-530.
    4. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
    5. Jung, Dongwon & Iida, Norimasa, 2018. "An investigation of multiple spark discharge using multi-coil ignition system for improving thermal efficiency of lean SI engine operation," Applied Energy, Elsevier, vol. 212(C), pages 322-332.
    6. Chen, Wei & Pan, Jianfeng & Liu, Yangxian & Fan, Baowei & Liu, Hongjun & Otchere, Peter, 2019. "Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine," Applied Energy, Elsevier, vol. 233, pages 453-467.
    7. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    8. Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Bao, Jianhui & Yang, Jinxin, 2019. "Numerical study on ignition amelioration of a hydrogen-enriched Wankel engine under lean-burn condition," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milad Ghorbanzadeh & Mohamad Issa & Adrian Ilinca, 2023. "Experimental Underperformance Detection of a Fixed-Speed Diesel–Electric Generator Based on Exhaust Gas Emissions," Energies, MDPI, vol. 16(8), pages 1-15, April.
    2. Rong Huang & Jimin Ni & Pengli Qiao & Qiwei Wang & Xiuyong Shi & Qi Yin, 2023. "An Explainable Prediction Model for Aerodynamic Noise of an Engine Turbocharger Compressor Using an Ensemble Learning and Shapley Additive Explanations Approach," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    3. Gong, Changming & Li, Dong & Liu, Jiajun & Liu, Fenghua, 2024. "Numerical evaluation of ignition timing influences on performance of a stratified-charge H2/methanol dual-injection automobile engine under lean-burn condition," Energy, Elsevier, vol. 290(C).
    4. Sofia Orjuela-Abril & Ana Torregroza-Espinosa & Jorge Duarte-Forero, 2023. "Innovative Technology Strategies for the Sustainable Development of Self-Produced Energy in the Colombian Industry," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    5. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    6. Yang, Jinxin & Wang, Huaiyu & Ji, Changwei & Chang, Ke & Wang, Shuofeng, 2023. "Investigation of intake closing timing on the flow field and combustion process in a small-scaled Wankel rotary engine under various engine speeds designed for the UAV application," Energy, Elsevier, vol. 273(C).
    7. Lei, Jian & Chai, Sen & Tian, Guohong & Liu, Hua & Yang, Xiyu & Shi, Cheng, 2024. "Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations," Energy, Elsevier, vol. 307(C).
    8. Yang, Zhenghao & Du, Yang & Gao, Xu & Zhang, Zeqi & Geng, Qi & He, Guangyu, 2024. "Comparative analysis of combustion, thermodynamic and environmental performance of hydrogen-doping X-type rotary engines using single-ignitor and dual-ignitors under high-altitude condition," Energy, Elsevier, vol. 307(C).
    9. Zhen Shang & Yao Sun & Xiumin Yu & Ling He & Luquan Ren, 2023. "Effect of Hydrogen-Rich Syngas Direct Injection on Combustion and Emissions in a Combined Fuel Injection—Spark-Ignition Engine," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    10. Young-Jic Kim & Young-Joon Park & Tae-Joon Park & Chang-Eon Lee, 2024. "Development of a Simulation Model for a New Rotary Engine to Optimize Port Location and Operating Conditions Using GT-POWER," Energies, MDPI, vol. 17(18), pages 1-21, September.
    11. Wang, Shuofeng & Sun, Yu & Yang, Jinxin & Wang, Huaiyu, 2024. "Effect of excess air ratio and ignition timing on the combustion and emission characteristics of the ammonia-hydrogen Wankel rotary engine," Energy, Elsevier, vol. 302(C).
    12. Liming Di & Zhuogang Sun & Fuxiang Zhi & Tao Wan & Qixin Yang, 2023. "Assessment of an Optimal Design Method for a High-Energy Ultrasonic Igniter Based on Multi-Objective Robustness Optimization," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    13. Shi, Cheng & Cheng, Tengfei & Yang, Xiyu & Zhang, Zheng & Duan, Ruiling & Li, Xujia, 2024. "Implementation of various injection rate shapes in an ammonia/diesel dual-fuel engine with special emphasis on combustion and emissions characteristics," Energy, Elsevier, vol. 304(C).
    14. Run Zou & Yi Zhang & Jinxiang Liu & Wei Yang & Yangang Zhang & Feng Li & Cheng Shi, 2022. "Effect of a Taper Intake Port on the Combustion Characteristics of a Small-Scale Rotary Engine," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
    15. Bo Zhang & Huaiyu Wang & Shuofeng Wang, 2023. "Computational Investigation of Combustion, Performance, and Emissions of a Diesel-Hydrogen Dual-Fuel Engine," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    16. Gong, Changming & Li, Dong & Liu, Jiajun & Liu, Fenghua, 2024. "Computational study of excess air ratio impacts on performances of a spark-ignition H2/methanol dual-injection engine," Energy, Elsevier, vol. 289(C).
    17. Xueyi Li & Tianyu Yu & Daiyou Li & Xiangkai Wang & Cheng Shi & Zhijie Xie & Xiangwei Kong, 2023. "A Migration Learning Method Based on Adaptive Batch Normalization Improved Rotating Machinery Fault Diagnosis," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    18. Shi, Cheng & Zhang, Zheng & Wang, Huaiyu & Wang, Jingyi & Cheng, Tengfei & Zhang, Liang, 2024. "Parametric analysis and optimization of the combustion process and pollutant performance for ammonia-diesel dual-fuel engines," Energy, Elsevier, vol. 296(C).
    19. Wang, Huaiyu & Ji, Changwei & Wang, Du & Wang, Zhe & Yang, Jinxin & Meng, Hao & Shi, Cheng & Wang, Shuofeng & Wang, Xin & Ge, Yunshan & Yang, Wenming, 2023. "Investigation on the potential of using carbon-free ammonia and hydrogen in small-scaled Wankel rotary engines," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Huichao & Ye, Xianlei & Zou, Run & Wang, Nana & Liu, Jinxiang, 2022. "Comparative study on ignition and combustion between conventional spark-ignition method and near-wall surface ignition method for small-scale Wankel rotary engine," Energy, Elsevier, vol. 255(C).
    2. Chang, Ke & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu & Xin, Gu & Meng, Hao, 2022. "Numerical investigation of the combined effect of injection angle and injection pressure in a gasoline direct injection rotary engine," Energy, Elsevier, vol. 254(PB).
    3. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    4. Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
    5. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    6. Yuan, Chenheng & Peng, Shizhuo & Zhou, Lifu, 2023. "Multi-field coupling effect of injection on dynamics and thermodynamics of a linear combustion engine generator with slow compression and fast expansion," Energy, Elsevier, vol. 270(C).
    7. Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.
    8. Chen, Wei & Pan, Jianfeng & Liu, Yangxian & Fan, Baowei & Liu, Hongjun & Otchere, Peter, 2019. "Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine," Applied Energy, Elsevier, vol. 233, pages 453-467.
    9. Yang, Jinxin & Wang, Huaiyu & Ji, Changwei & Chang, Ke & Wang, Shuofeng, 2023. "Investigation of intake closing timing on the flow field and combustion process in a small-scaled Wankel rotary engine under various engine speeds designed for the UAV application," Energy, Elsevier, vol. 273(C).
    10. Fan, Baowei & Zeng, Yonghao & Pan, Jianfeng & Fang, Jia & Salami, Hammed Adeniyi & Wang, Yuanguang, 2022. "Numerical study of injection strategy on the combustion process in a peripheral ported rotary engine fueled with natural gas/hydrogen blends under the action of apex seal leakage," Energy, Elsevier, vol. 242(C).
    11. Run Zou & Yi Zhang & Jinxiang Liu & Wei Yang & Yangang Zhang & Feng Li & Cheng Shi, 2022. "Effect of a Taper Intake Port on the Combustion Characteristics of a Small-Scale Rotary Engine," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
    12. Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu, 2021. "Effects of split direct-injected hydrogen strategies on combustion and emissions performance of a small-scale rotary engine," Energy, Elsevier, vol. 215(PA).
    13. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    14. Zou, Run & Li, Yuan & Liu, Jinxiang & Wang, Nana & Zeng, Qinghan & Li, Jiong, 2023. "Numerical study on the effects of spark strategies on knocking combustion in a downsized gasoline rotary engine," Energy, Elsevier, vol. 263(PD).
    15. Wang, Chongyao & Wang, Xin & Wang, Huaiyu & Xu, Yonghong & Ge, Yunshan & Tan, Jianwei & Hao, Lijun & Wang, Yachao & Zhang, Mengzhu & Li, Ruonan, 2024. "Co-optimizing NOx emission and power output of a natural gas engine-ORC combined system through neural networks and genetic algorithms," Energy, Elsevier, vol. 289(C).
    16. Merve Kucuk & Ali Surmen & Ramazan Sener, 2022. "Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)," Energies, MDPI, vol. 15(24), pages 1-22, December.
    17. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Assessment of diesel engine performance using spirulina microalgae biodiesel," Energy, Elsevier, vol. 166(C), pages 1025-1036.
    18. Gao, Jianbing & Tian, Guohong & Jenner, Phil & Burgess, Max & Emhardt, Simon, 2020. "Preliminary explorations of the performance of a novel small scale opposed rotary piston engine," Energy, Elsevier, vol. 190(C).
    19. Qi Geng & Xuede Wang & Yang Du & Zhenghao Yang & Rui Wang & Guangyu He, 2022. "Effect of the Hydrogen Injection Position on the Combustion Process of a Direct Injection X-Type Rotary Engine with a Hydrogen Blend," Energies, MDPI, vol. 15(19), pages 1-19, October.
    20. Yuan, Chenheng & Liu, Yang & Han, Cuijie & He, Yituan, 2019. "An investigation of mixture formation characteristics of a free-piston gasoline engine with direct-injection," Energy, Elsevier, vol. 173(C), pages 626-636.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.