IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs0360544222000500.html
   My bibliography  Save this article

Effect of components on the emulsification characteristic of glucose solution emulsified heavy fuel oil

Author

Listed:
  • Chen, Zhenbin
  • Wang, Li
  • Wei, Zhilong
  • Wang, Yu
  • Deng, Jiaojun

Abstract

Glucose, which can be obtained from the biomass directly, was added into the heavy fuel oil in the form of an aqueous solution to prepare a novel alternative emulsified fuel. The effects of different components (water, glucose and surfactant) on the droplet size distribution, the stability and the viscosity-temperature characteristics were studied experimentally. Results show that the increases in both the water concentration (0–40v/v%) and the hydrophile-lipophile balance (HLB) value (4.3–14.3) have the negative influence on the stability. By contrast, with the enhanced glucose blend ratio (0–40%), the stability and the homogeneity present the rising trends before they are decreased. It is worth noting that the long-term stability (85 °C, 30 days without separation) along with the minimum mean droplet size can be obtained at the 30% glucose blend ratio. Besides, the long-term stability cannot be not obtained at both surfactant concentration of 1% and 5%. The viscosity of the emulsion with surfactant is reduced in the range of 25–35 °C but increased in the range of 60–95 °C compared with that of emulsion without surfactant. Furthermore, there exists the quite slight change of the viscosity with the addition of glucose.

Suggested Citation

  • Chen, Zhenbin & Wang, Li & Wei, Zhilong & Wang, Yu & Deng, Jiaojun, 2022. "Effect of components on the emulsification characteristic of glucose solution emulsified heavy fuel oil," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000500
    DOI: 10.1016/j.energy.2022.123147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222000500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ho Young & Han, Karam & Kim, Hyun Hee & Park, Sangbin & Jang, Jihoon & Yu, Geun Sil & Ko, Ji Ho, 2020. "Comparisons of combustion characteristics between bioliquid and heavy fuel oil combustion in a 0.7 MWth pilot furnace and a 75 MWe utility boiler," Energy, Elsevier, vol. 192(C).
    2. Suurs, Roald A.A. & Hekkert, Marko P., 2009. "Competition between first and second generation technologies: Lessons from the formation of a biofuels innovation system in the Netherlands," Energy, Elsevier, vol. 34(5), pages 669-679.
    3. Reham, S.S. & Masjuki, H.H. & Kalam, M.A. & Shancita, I. & Rizwanul Fattah, I.M. & Ruhul, A.M., 2015. "Study on stability, fuel properties, engine combustion, performance and emission characteristics of biofuel emulsion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1566-1579.
    4. de Luna, Mark Daniel G. & Cruz, Louie Angelo D. & Chen, Wei-Hsin & Lin, Bo-Jhih & Hsieh, Tzu-Hsien, 2017. "Improving the stability of diesel emulsions with high pyrolysis bio-oil content by alcohol co-surfactants and high shear mixing strategies," Energy, Elsevier, vol. 141(C), pages 1416-1428.
    5. Ismael, Mhadi A. & Heikal, Morgan R. & Aziz, A. Rashid A. & Syah, Firman & Zainal A., Ezrann Z. & Crua, Cyril, 2018. "The effect of fuel injection equipment on the dispersed phase of water-in-diesel emulsions," Applied Energy, Elsevier, vol. 222(C), pages 762-771.
    6. Wang, Jigang & Qiao, Xinqi & Ju, Dehao & Wang, Lintao & Sun, Chunhua, 2019. "Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations," Energy, Elsevier, vol. 183(C), pages 149-159.
    7. Shen, Shiquan & Sun, Kai & Che, Zhizhao & Wang, Tianyou & Jia, Ming & Cai, Junqian, 2020. "Mechanism of micro-explosion of water-in-oil emulsified fuel droplet and its effect on soot generation," Energy, Elsevier, vol. 191(C).
    8. Chung-Yao Hsuan & Shuhn-Shyurng Hou & Yun-Li Wang & Ta-Hui Lin, 2019. "Water-In-Oil Emulsion as Boiler Fuel for Reduced NO x Emissions and Improved Energy Saving," Energies, MDPI, vol. 12(6), pages 1-14, March.
    9. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Davydov & Vadim Davydov & Valentin Dudkin, 2022. "The Nuclear Magnetic Flowmeter for Monitoring the Consumption and Composition of Oil and Its Complex Mixtures in Real-Time," Energies, MDPI, vol. 15(9), pages 1-20, April.
    2. Rustem Kashaev & Nguyen Duc Ahn & Valeriya Kozelkova & Oleg Kozelkov & Valentin Dudkin, 2023. "Online Multiphase Flow Measurement of Crude Oil Properties Using Nuclear (Proton) Magnetic Resonance Automated Measurement Complex for Energy Safety at Smart Oil Deposits," Energies, MDPI, vol. 16(3), pages 1-16, January.
    3. Shi, Cheng & Zhang, Zheng & Wang, Huaiyu & Wang, Jingyi & Cheng, Tengfei & Zhang, Liang, 2024. "Parametric analysis and optimization of the combustion process and pollutant performance for ammonia-diesel dual-fuel engines," Energy, Elsevier, vol. 296(C).
    4. Klimenko, A. & Shlegel, N.E. & Strizhak, P.A., 2023. "Breakup of colliding droplets and particles produced by heavy fuel oil pyrolysis," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    2. Zhou, Feng & Wang, Jigang & Zhou, Xincong & Qiao, Xinqi & Wen, Xiaofei, 2021. "Effect of 2, 5-dimethylfuran concentration on micro-explosive combustion characteristics of biodiesel droplet," Energy, Elsevier, vol. 224(C).
    3. Rosli, Mohd A.F. & Aziz, A. Rashid A. & Ismael, Mhadi A. & Elbashir, Nimir O. & Zainal A., Ezrann Z. & Baharom, Masri & Mohammed, Salah E., 2021. "Experimental study of micro-explosion and puffing of gas-to-liquid (GTL) fuel blends by suspended droplet method," Energy, Elsevier, vol. 218(C).
    4. Wang, Zhaowen & Yuan, Bo & Cao, Junhui & Huang, Yuhan & Cheng, Xiaobei & Wang, Yuzhou & Zhang, Xinhua & Liu, Hao, 2022. "A new shift mechanism for micro-explosion of water-diesel emulsion droplets at different ambient temperatures," Applied Energy, Elsevier, vol. 323(C).
    5. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    6. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    7. Dmitrii V. Antonov & Roman M. Fedorenko & Leonid S. Yanovskiy & Pavel A. Strizhak, 2023. "Physical and Mathematical Models of Micro-Explosions: Achievements and Directions of Improvement," Energies, MDPI, vol. 16(16), pages 1-16, August.
    8. Dmitrii V. Antonov & Roman M. Fedorenko & Pavel A. Strizhak, 2022. "Micro-Explosion Phenomenon: Conditions and Benefits," Energies, MDPI, vol. 15(20), pages 1-19, October.
    9. Mohd Tamam, Mohamad Qayyum & Yahya, Wira Jazair & Ithnin, Ahmad Muhsin & Abdullah, Nik Rosli & Kadir, Hasannuddin Abdul & Rahman, Md Mujibur & Rahman, Hasbullah Abdul & Abu Mansor, Mohd Radzi & Noge, , 2023. "Performance and emission studies of a common rail turbocharged diesel electric generator fueled with emulsifier free water/diesel emulsion," Energy, Elsevier, vol. 268(C).
    10. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    11. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    13. Yuan, Xingzhong & Ding, Xiaowei & Leng, Lijian & Li, Hui & Shao, Jianguang & Qian, Yingying & Huang, Huajun & Chen, Xiaohong & Zeng, Guangming, 2018. "Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions," Energy, Elsevier, vol. 154(C), pages 110-118.
    14. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    15. Stefan Ćetković & Aron Buzogány & Miranda Schreurs, 2016. "Varieties of clean energy transitions in Europe: Political-economic foundations of onshore and offshore wind development," WIDER Working Paper Series wp-2016-18, World Institute for Development Economic Research (UNU-WIDER).
    16. Kumar, Himansh & Sarma, A.K. & Kumar, Pramod, 2020. "A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    17. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    18. Annala, Salla & Ruggiero, Salvatore & Kangas, Hanna-Liisa & Honkapuro, Samuli & Ohrling, Tiina, 2022. "Impact of home market on business development and internationalization of demand response firms," Energy, Elsevier, vol. 242(C).
    19. Haase, Rachel & Bielicki, Jeffrey & Kuzma, Jennifer, 2013. "Innovation in emerging energy technologies: A case study analysis to inform the path forward for algal biofuels," Energy Policy, Elsevier, vol. 61(C), pages 1595-1607.
    20. Al-Harbi, Ahmed A. & Alabduly, Abdullah J. & Alkhedhair, Abdullah M. & Alqahtani, Naif B. & Albishi, Miqad S., 2022. "Effect of operation under lean conditions on NOx emissions and fuel consumption fueling an SI engine with hydrous ethanol–gasoline blends enhanced with synthesis gas," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.