IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224025416.html
   My bibliography  Save this article

Comparative analysis of combustion, thermodynamic and environmental performance of hydrogen-doping X-type rotary engines using single-ignitor and dual-ignitors under high-altitude condition

Author

Listed:
  • Yang, Zhenghao
  • Du, Yang
  • Gao, Xu
  • Zhang, Zeqi
  • Geng, Qi
  • He, Guangyu

Abstract

In this paper, a novel hydrogen-doping X-type rotary engine (XRE) using dual-ignitors is proposed to improve its high-altitude performance. Firstly, the effects of hydrogen doping fraction and operation altitude on the combustion, thermodynamic and environmental performance of XRE are revealed by establishing CFD model. Furthermore, the novel dual-ignition strategy using different ignition intervals is raised based on the eddy distribution characteristics. Finally, the comprehensive performance of the dual-ignition strategies is analyzed by comparing with the traditional single-ignition strategy under high-altitude conditions. The results show that the thermal efficiency increases firstly and then drops with the increasing hydrogen doping fraction. When hydrogen doping fraction increase by 6 %, the NOx emission increases by 2.9 times at 0 km altitude, while it increases by 4.2 times at 6 km altitude. Auxiliary ignitor arranged at back side can generate backward flame and promote combustion. At 0 km altitude, the thermal efficiency of dual-ignition reaches the maximum of 0.330, which is 3.12 % higher than that of single-ignition. However, the synchronous dual-ignition is the best strategy at high-altitude, in which the thermal efficiency is improved by 2.59 % and CO2 emission is reduced by 3.99 % compared with the asynchronous ignition using an interval of 10 °EA.

Suggested Citation

  • Yang, Zhenghao & Du, Yang & Gao, Xu & Zhang, Zeqi & Geng, Qi & He, Guangyu, 2024. "Comparative analysis of combustion, thermodynamic and environmental performance of hydrogen-doping X-type rotary engines using single-ignitor and dual-ignitors under high-altitude condition," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224025416
    DOI: 10.1016/j.energy.2024.132767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224025416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merve Kucuk & Ali Surmen & Ramazan Sener, 2022. "Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)," Energies, MDPI, vol. 15(24), pages 1-22, December.
    2. Shimon Pisnoy & Leonid Tartakovsky, 2021. "Numerical Investigation of the Combined Influence of Three-Plug Arrangement and Slot Positioning on Wankel Engine Performance," Energies, MDPI, vol. 14(4), pages 1-18, February.
    3. Wang, Xin & Ge, Yunshan & Yu, Linxiao & Feng, Xiangyu, 2013. "Effects of altitude on the thermal efficiency of a heavy-duty diesel engine," Energy, Elsevier, vol. 59(C), pages 543-548.
    4. Kan, Zechao & Hu, Zhiyuan & Lou, Diming & Tan, Piqiang & Cao, Zhiyi & Yang, Zhenhuan, 2018. "Effects of altitude on combustion and ignition characteristics of speed-up period during cold start in a diesel engine," Energy, Elsevier, vol. 150(C), pages 164-175.
    5. Shi, Cheng & Chai, Sen & Di, Liming & Ji, Changwei & Ge, Yunshan & Wang, Huaiyu, 2023. "Combined experimental-numerical analysis of hydrogen as a combustion enhancer applied to wankel engine," Energy, Elsevier, vol. 263(PC).
    6. Zhenghao Yang & Yang Du & Qi Geng & Xu Gao & Haonan Er & Yuanfei Liu & Guangyu He, 2022. "Performance Analysis of a Hydrogen-Doped High-Efficiency Hybrid Cycle Rotary Engine in High-Altitude Environments Based on a Single-Zone Model," Energies, MDPI, vol. 15(21), pages 1-20, October.
    7. Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Bao, Jianhui & Yang, Jinxin, 2019. "Numerical study on ignition amelioration of a hydrogen-enriched Wankel engine under lean-burn condition," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Jian & Chai, Sen & Tian, Guohong & Liu, Hua & Yang, Xiyu & Shi, Cheng, 2024. "Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations," Energy, Elsevier, vol. 307(C).
    2. Liu, Jinlong & Wang, Bosen & Meng, Zhongwei & Liu, Zhentao, 2023. "An examination of performance deterioration indicators of diesel engines on the plateau," Energy, Elsevier, vol. 262(PB).
    3. Xiangting Wang & Haiqiao Wei & Jiaying Pan & Zhen Hu & Zeyuan Zheng & Mingzhang Pan, 2020. "Analysis of Diesel Knock for High-Altitude Heavy-Duty Engines Using Optical Rapid Compression Machines," Energies, MDPI, vol. 13(12), pages 1-14, June.
    4. Lu, Kangbo & Qiu, Hongjian & Chen, Ziqiang & Shi, Lei & Deng, Kangyao, 2023. "Environmental adaptability method for improving the cold start performance of the diesel engine based on pilot injection strategy," Energy, Elsevier, vol. 281(C).
    5. Zhipeng Li & Qiang Zhang & Fujun Zhang & Hongbo Liang & Yu Zhang, 2023. "Investigation of Effect of Nozzle Numbers on Diesel Engine Performance Operated at Plateau Environment," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    6. Zambalov, Sergey & Kasaev, Dmitry & Yakovlev, Igor & Ji, Changwei & Yang, Jinxin & Maznoy, Anatoly, 2024. "Effect of over-expansion in a cycloidal rotary engine," Energy, Elsevier, vol. 302(C).
    7. Gong, Changming & Li, Dong & Liu, Jiajun & Liu, Fenghua, 2024. "Computational study of excess air ratio impacts on performances of a spark-ignition H2/methanol dual-injection engine," Energy, Elsevier, vol. 289(C).
    8. Milad Ghorbanzadeh & Mohamad Issa & Adrian Ilinca, 2023. "Experimental Underperformance Detection of a Fixed-Speed Diesel–Electric Generator Based on Exhaust Gas Emissions," Energies, MDPI, vol. 16(8), pages 1-15, April.
    9. Lu, Kangbo & Shi, Lei & Zhang, Huiyan & Chen, Ziqiang & Deng, Kangyao, 2023. "Theoretical and experimental study on performance improvement of diesel engines at different altitudes by adaptive regulation method of the two-stage turbocharging system," Energy, Elsevier, vol. 281(C).
    10. Yuan, Chenheng & Peng, Shizhuo & Zhou, Lifu, 2023. "Multi-field coupling effect of injection on dynamics and thermodynamics of a linear combustion engine generator with slow compression and fast expansion," Energy, Elsevier, vol. 270(C).
    11. Chen, Guisheng & Sun, Min & Li, Junda & Wang, Jiguang & Shen, Yinggang & Liang, Daping & Xiao, Renxin, 2024. "Study on high-altitude ceiling strategy of compression ignition aviation piston engines based on BP-NSGA II algorithm optimization," Energy, Elsevier, vol. 294(C).
    12. Wang, Shuofeng & Sun, Yu & Yang, Jinxin & Wang, Huaiyu, 2024. "Effect of excess air ratio and ignition timing on the combustion and emission characteristics of the ammonia-hydrogen Wankel rotary engine," Energy, Elsevier, vol. 302(C).
    13. Yan, Xiaodong & Feng, Huihua & Zuo, Zhengxing & Zhang, Zhiyuan & Wu, Limin & Shi, Cheng, 2021. "A study on the working characteristics of free piston linear generator with dual cylinder configuration by different secondary injection strategies," Energy, Elsevier, vol. 233(C).
    14. Yang, Jinxin & Wang, Huaiyu & Ji, Changwei & Chang, Ke & Wang, Shuofeng, 2023. "Investigation of intake closing timing on the flow field and combustion process in a small-scaled Wankel rotary engine under various engine speeds designed for the UAV application," Energy, Elsevier, vol. 273(C).
    15. Zhang, Chunhua & Li, Yangyang & Liu, Zhentao & Liu, Jinlong, 2022. "An investigation of the effect of plateau environment on the soot generation and oxidation in diesel engines," Energy, Elsevier, vol. 253(C).
    16. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    17. Zou, Run & Li, Yuan & Liu, Jinxiang & Wang, Nana & Zeng, Qinghan & Li, Jiong, 2023. "Numerical study on the effects of spark strategies on knocking combustion in a downsized gasoline rotary engine," Energy, Elsevier, vol. 263(PD).
    18. Merve Kucuk & Ali Surmen & Ramazan Sener, 2022. "Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)," Energies, MDPI, vol. 15(24), pages 1-22, December.
    19. Zhang, Huiyan & Shi, Lei & Deng, Kangyao & Liu, Sheng & Yang, Zhenhuan, 2020. "Experiment investigation on the performance and regulation rule of two-stage turbocharged diesel engine for various altitudes operation," Energy, Elsevier, vol. 192(C).
    20. Gong, Changming & Li, Dong & Liu, Jiajun & Liu, Fenghua, 2024. "Numerical evaluation of ignition timing influences on performance of a stratified-charge H2/methanol dual-injection automobile engine under lean-burn condition," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224025416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.