IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015834.html
   My bibliography  Save this article

State of art of hydrogen utilization for building sector and set-up with preliminary experimental results of 1 kWel solid oxide fuel cell installed in a nearly zero energy house

Author

Listed:
  • De Masi, Rosa Francesca
  • Festa, Valentino
  • Penchini, Daniele
  • Ruggiero, Silvia
  • Tariello, Francesco
  • Vanoli, Giuseppe Peter
  • Zinno, Alberto

Abstract

The diffusion on large scale of the hydrogen-fueled technologies could be a strategy for boosting the expected decarbonisation of the civil sector. However, there are still a lot of unanswered questions about the real feasibility and the problems of the integration in a pre-existing building-plants system. Despite some conflicting opinions, the research about the application of the hydrogen system in the building sector must continue to make the technology more attractive and easily available at low cost. Therefore, first of all, the paper analyses advantages and issues through a broad overview. The main limits of the available studies regard both the approach and the technology integration. Indeed, there are few data about in-field performance analysis since the simulative/numerical investigations are usually based on in-lab prototypes. The most diffused systems referred to integrated energy solutions with proton exchange membrane fuel cell technology and in any case the integration in very low energy buildings such as the nearly zero energy (nZEB) ones is not discussed. Then basing on the discussed research gap, the paper focuses on the set-up of a new installation of micro-combined cooling, heating and power unit based on solid oxide fuel cell technology fueled by green hydrogen. The complexity in the design of the integration with other innovative plant configurations is discussed considering as real case study a nZEB in Mediterranean climate. Preliminarily experimental results show that the combination of fuel cell and photovoltaic system could bring to positive energy with surplus energy, during autumn season, of about 23.8 kWh. Moreover, it is also proposed the validation of a dynamic numerical model developed by means of TRNSYS (Transient System Simulation Tool) that will be used for further sensitivity analysis.

Suggested Citation

  • De Masi, Rosa Francesca & Festa, Valentino & Penchini, Daniele & Ruggiero, Silvia & Tariello, Francesco & Vanoli, Giuseppe Peter & Zinno, Alberto, 2024. "State of art of hydrogen utilization for building sector and set-up with preliminary experimental results of 1 kWel solid oxide fuel cell installed in a nearly zero energy house," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015834
    DOI: 10.1016/j.energy.2024.131810
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beccali, M. & Brunone, S. & Cellura, M. & Franzitta, V., 2008. "Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings," Renewable Energy, Elsevier, vol. 33(3), pages 366-382.
    2. Marco Ratto, 2008. "Analysing DSGE Models with Global Sensitivity Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 115-139, March.
    3. Dimitrios Tziritas & George M. Stavrakakis & Dimitris Bakirtzis & George Kaplanis & Konstantinos Patlitzianas & Markos Damasiotis & Panagiotis L. Zervas, 2023. "Techno-Economic Analysis of a Hydrogen-Based Power Supply Backup System for Tertiary Sector Buildings: A Case Study in Greece," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    4. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    5. Fong, K.F. & Lee, C.K., 2014. "Investigation on zero grid-electricity design strategies of solid oxide fuel cell trigeneration system for high-rise building in hot and humid climate," Applied Energy, Elsevier, vol. 114(C), pages 426-433.
    6. Jia, Shuning & Sheng, Kai & Huang, Dehai & Hu, Kai & Xu, Yizhe & Yan, Chengchu, 2023. "Design optimization of energy systems for zero energy buildings based on grid-friendly interaction with smart grid," Energy, Elsevier, vol. 284(C).
    7. Yang, Xiaohui & Huang, Zezhong & Xiao, Riying & Wu, Chilv & Zhang, Zhonglian & Mei, Linghao, 2024. "Optimisation and analysis of an integrated energy system with hydrogen supply using solar spectral beam splitting pre-processing," Energy, Elsevier, vol. 287(C).
    8. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. He, Yingdong & Zhou, Yuekuan & Wang, Zhe & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2021. "Quantification on fuel cell degradation and techno-economic analysis of a hydrogen-based grid-interactive residential energy sharing network with fuel-cell-powered vehicles," Applied Energy, Elsevier, vol. 303(C).
    10. Rosendal, Mathias Berg & Münster, Marie & Bramstoft, Rasmus, 2024. "Renewable fuel production and the impact of hydrogen infrastructure — A case study of the Nordics," Energy, Elsevier, vol. 297(C).
    11. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. DeValeria, Michelle K. & Michaelides, Efstathios E. & Michaelides, Dimitrios N., 2020. "Energy and thermal storage in clusters of grid-independent buildings," Energy, Elsevier, vol. 190(C).
    13. Farrokhi, Meysam & Javani, Nader & Motallebzadeh, Roghayyeh & Ebrahimpour, Abdolsalam, 2022. "Dynamic simulation and optimization of a novel energy system with Hydrogen energy storage for hotel buildings," Energy, Elsevier, vol. 257(C).
    14. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Meng, Xin & Deng, Bohao & Wu, Weifeng & Zhao, Pan, 2023. "Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)," Energy, Elsevier, vol. 284(C).
    15. Wang, Jian & Xu, Yi-Peng & She, Chen & Xu, Ping & Bagal, Hamid Asadi, 2022. "Optimal parameter identification of SOFC model using modified gray wolf optimization algorithm," Energy, Elsevier, vol. 240(C).
    16. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2024. "Optimal design of a renewable hydrogen production system by coordinating multiple PV arrays and multiple electrolyzers," Renewable Energy, Elsevier, vol. 225(C).
    17. Le, Son Tay & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Teodosio, Birch & Ngo, Tuan Duc, 2024. "Comparative life cycle assessment of renewable energy storage systems for net-zero buildings with varying self-sufficient ratios," Energy, Elsevier, vol. 290(C).
    18. Wakui, Tetsuya & Yokoyama, Ryohei, 2012. "Optimal sizing of residential SOFC cogeneration system for power interchange operation in housing complex from energy-saving viewpoint," Energy, Elsevier, vol. 41(1), pages 65-74.
    19. Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Fathy, Ahmed & Rezk, Hegazy, 2022. "Political optimizer based approach for estimating SOFC optimal parameters for static and dynamic models," Energy, Elsevier, vol. 238(PC).
    21. Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).
    22. Mohammadi, Zahra & Ahmadi, Pouria & Ashjaee, Mehdi, 2024. "Comparative transient assessment and optimization of battery and hydrogen energy storage systems for near-zero energy buildings," Renewable Energy, Elsevier, vol. 220(C).
    23. Hemmati, Reza & Bornapour, Seyyed Mohammad & Saboori, Hedayat, 2024. "Standalone hybrid power-hydrogen system incorporating daily-seasonal green hydrogen storage and hydrogen refueling station," Energy, Elsevier, vol. 295(C).
    24. Li, Jianwei & Liu, Jie & Wang, Tianci & Zou, Weitao & Yang, Qingqing & Shen, Jun, 2024. "Analysis of the evolution characteristics of hydrogen leakage and diffusion in a temperature stratified environment," Energy, Elsevier, vol. 293(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yuhao & Luo, Xiaobing & Tu, Zhengkai & Siew Hwa Chan,, 2022. "Multi-criteria assessment of solid oxide fuel cell–combined cooling, heating, and power system model for residential application," Energy, Elsevier, vol. 259(C).
    2. Liu, Lijun & Qian, Jin & Hua, Li & Zhang, Bin, 2022. "System estimation of the SOFCs using fractional-order social network search algorithm," Energy, Elsevier, vol. 255(C).
    3. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2022. "Dynamic simulation modelling of reversible solid oxide fuel cells for energy storage purpose," Energy, Elsevier, vol. 260(C).
    5. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Hong, Taehoon & Kim, Daeho & Koo, Choongwan & Kim, Jimin, 2014. "Framework for establishing the optimal implementation strategy of a fuel-cell-based combined heat and power system: Focused on multi-family housing complex," Applied Energy, Elsevier, vol. 127(C), pages 11-24.
    7. Huang, Weifeng & Niu, Tong & Zhang, Caizhi & Fu, Zuhang & Zhang, Yuqi & Zhou, Weijiang & Pan, Zehua & Zhang, Kaiqing, 2023. "Experimental study of the performance degradation of proton exchange membrane fuel cell based on a multi-module stack under selected load profiles by clustering algorithm," Energy, Elsevier, vol. 270(C).
    8. Marrasso, E. & Martone, C. & Pallotta, G. & Roselli, C. & Sasso, M., 2024. "Assessment of energy systems configurations in mixed-use Positive Energy Districts through novel indicators for energy and environmental analysis," Applied Energy, Elsevier, vol. 368(C).
    9. Daeho Kim & Jimin Kim & Choongwan Koo & Taehoon Hong, 2014. "An Economic and Environmental Assessment Model for Selecting the Optimal Implementation Strategy of Fuel Cell Systems—A Focus on Building Energy Policy," Energies, MDPI, vol. 7(8), pages 1-22, August.
    10. Albonico, Alice & Paccagnini, Alessia & Tirelli, Patrizio, 2017. "Great recession, slow recovery and muted fiscal policies in the US," Journal of Economic Dynamics and Control, Elsevier, vol. 81(C), pages 140-161.
    11. Acurio Vásconez, Verónica & Giraud, Gaël & Mc Isaac, Florent & Pham, Ngoc-Sang, 2015. "The effects of oil price shocks in a new-Keynesian framework with capital accumulation," Energy Policy, Elsevier, vol. 86(C), pages 844-854.
    12. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    13. Cristiano Cantore & Filippo Ferroni & Miguel León-Ledesma, 2021. "The Missing Link: Monetary Policy and The Labor Share," Journal of the European Economic Association, European Economic Association, vol. 19(3), pages 1592-1620.
    14. Bletzinger, Tilman & Lalik, Magdalena, 2017. "The impact of constrained monetary policy on fiscal multipliers on output and inflation," Working Paper Series 2019, European Central Bank.
    15. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    16. Gai, Wei-Zhuo & Wang, Le-Yao & Lu, Meng-Yao & Deng, Zhen-Yan, 2023. "Effect of low concentration hydroxides on Al hydrolysis for hydrogen production," Energy, Elsevier, vol. 268(C).
    17. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    18. Yang, Wei-Wei & Tang, Xin-Yuan & Ma, Xu & Li, Jia-Chen & Xu, Chao & He, Ya-Ling, 2023. "Rapid prediction, optimization and design of solar membrane reactor by data-driven surrogate model," Energy, Elsevier, vol. 285(C).
    19. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    20. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.