IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124017932.html
   My bibliography  Save this article

Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning

Author

Listed:
  • Lan, Penghang
  • Chen, She
  • Li, Qihang
  • Li, Kelin
  • Wang, Feng
  • Zhao, Yaoxun

Abstract

To achieve carbon neutrality, hydrogen and ammonia are considered promising energy carriers for renewable energy. Efficient use of these resources has become a critical research focus. Here we propose an intelligent hydrogen-ammonia combined energy storage system. To maximize net present value (NPV), deep reinforcement learning (DRL) is employed for the energy management strategy, dynamically adjusting the priority between hydrogen and ammonia. The results indicate that the DRL pathway achieves the highest NPV of 1.38 M$, which is 194 % of the benchmark pathway. Furthermore, the DRL pathway utilizes energy resources more efficiently, its grid dependency portion is lower than that of the benchmark pathway, particularly in November, by less than 0.8 %. Compared to conventional ways, the DRL pathway achieves zero carbon footprint, equivalently reducing 4819 tons, 17,715 tons and 94,944 tons of CO2 emissions for ammonia, hydrogen and electricity production, respectively. Considering the carbon tax policy, this pathway could save up to 5.87 M$ annually.

Suggested Citation

  • Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017932
    DOI: 10.1016/j.renene.2024.121725
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.