IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics0306261924007578.html
   My bibliography  Save this article

Assessment of energy systems configurations in mixed-use Positive Energy Districts through novel indicators for energy and environmental analysis

Author

Listed:
  • Marrasso, E.
  • Martone, C.
  • Pallotta, G.
  • Roselli, C.
  • Sasso, M.

Abstract

Positive Energy Districts may support the energy transition of urban city centres as well as the decarbonization of other sectors in addition to buildings, such as industry. In this framework, this work aims at identifying the optimal configuration of energy systems serving a mixed-use district located in the industrial area of a city in the South of Italy. Evacuated tube collectors are installed along with renewable-based plants for electricity supply (that is, photovoltaic panels and wind turbines). Moreover, the district is equipped with an electrolyser for green hydrogen production. Two novel indicators have been introduced for performing the energy and environmental assessment: the Positive Balance Check and the Carbon Neutrality Check. These indexes are useful to verify the accomplishment of the targets of Positive Energy Districts. Therefore, they may serve to guide the design of novel district-based energy systems as well as the renovation of existing ones, as with the case study investigated in this work. Indeed, the district under analysis is provided with surplus renewable thermal and electric energy and achieves carbon neutrality in the optimal configuration chosen. The results obtained highlight the relevance of designing multi-vector energy systems, aiming to decarbonize both electric and heating energy requests.

Suggested Citation

  • Marrasso, E. & Martone, C. & Pallotta, G. & Roselli, C. & Sasso, M., 2024. "Assessment of energy systems configurations in mixed-use Positive Energy Districts through novel indicators for energy and environmental analysis," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924007578
    DOI: 10.1016/j.apenergy.2024.123374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartolini, Andrea & Carducci, Francesco & Muñoz, Carlos Boigues & Comodi, Gabriele, 2020. "Energy storage and multi energy systems in local energy communities with high renewable energy penetration," Renewable Energy, Elsevier, vol. 159(C), pages 595-609.
    2. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    3. Hearn, Adam X., 2022. "Positive energy district stakeholder perceptions and measures for energy vulnerability mitigation," Applied Energy, Elsevier, vol. 322(C).
    4. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    5. Falke, Tobias & Krengel, Stefan & Meinerzhagen, Ann-Kathrin & Schnettler, Armin, 2016. "Multi-objective optimization and simulation model for the design of distributed energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1508-1516.
    6. Francesca Ceglia & Elisa Marrasso & Chiara Martone & Giovanna Pallotta & Carlo Roselli & Maurizio Sasso, 2023. "Towards the Decarbonization of Industrial Districts through Renewable Energy Communities: Techno-Economic Feasibility of an Italian Case Study," Energies, MDPI, vol. 16(6), pages 1-23, March.
    7. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    8. He, Yingdong & Zhou, Yuekuan & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2022. "An inter-city energy migration framework for regional energy balance through daily commuting fuel-cell vehicles," Applied Energy, Elsevier, vol. 324(C).
    9. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    10. Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
    11. Guilherme Pontes Luz & Rodrigo Amaro e Silva, 2021. "Modeling Energy Communities with Collective Photovoltaic Self-Consumption: Synergies between a Small City and a Winery in Portugal," Energies, MDPI, vol. 14(2), pages 1-26, January.
    12. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Jamal, Taskin & Dyduch, Joanna & Arif, M.T. & Manoj Kumar, Nallapaneni & Shafiullah, GM & Chopra, Shauhrat S. & Nadarajah, Mithulananthan, 2021. "Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy sustainability (SDG 7) in the post-COVID-19 world," Applied Energy, Elsevier, vol. 292(C).
    13. Zwickl-Bernhard, Sebastian & Auer, Hans, 2021. "Open-source modeling of a low-carbon urban neighborhood with high shares of local renewable generation," Applied Energy, Elsevier, vol. 282(PA).
    14. Maes, Tom & Van Eetvelde, Greet & De Ras, Evelien & Block, Chantal & Pisman, Ann & Verhofstede, Bjorn & Vandendriessche, Frederik & Vandevelde, Lieven, 2011. "Energy management on industrial parks in Flanders," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1988-2005, May.
    15. Marino, C. & Nucara, A. & Pietrafesa, M. & Pudano, A., 2013. "An energy self-sufficient public building using integrated renewable sources and hydrogen storage," Energy, Elsevier, vol. 57(C), pages 95-105.
    16. Pavičević, Matija & Mangipinto, Andrea & Nijs, Wouter & Lombardi, Francesco & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo & Colombo, Emanuela & Quoilin, Sylvain, 2020. "The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models," Applied Energy, Elsevier, vol. 267(C).
    17. Bühler, Fabian & Nguyen, Tuong-Van & Elmegaard, Brian, 2016. "Energy and exergy analyses of the Danish industry sector," Applied Energy, Elsevier, vol. 184(C), pages 1447-1459.
    18. Badakhsh, Arash & Mothilal Bhagavathy, Sivapriya, 2024. "Caveats of green hydrogen for decarbonisation of heating in buildings," Applied Energy, Elsevier, vol. 353(PB).
    19. Simeoni, Patrizia & Nardin, Gioacchino & Ciotti, Gellio, 2018. "Planning and design of sustainable smart multi energy systems. The case of a food industrial district in Italy," Energy, Elsevier, vol. 163(C), pages 443-456.
    20. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    21. Ceglia, Francesca & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio, 2023. "Energy and environmental assessment of a biomass-based renewable energy community including photovoltaic and hydroelectric systems," Energy, Elsevier, vol. 282(C).
    22. Andrea Gabaldón Moreno & Fredy Vélez & Beril Alpagut & Patxi Hernández & Cecilia Sanz Montalvillo, 2021. "How to Achieve Positive Energy Districts for Sustainable Cities: A Proposed Calculation Methodology," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    23. Diab, Ibrahim & Damianakis, Nikolaos & Chandra-Mouli, Gautham Ram & Bauer, Pavol, 2024. "A shared PV system for transportation and residential loads to reduce curtailment and the need for storage systems," Applied Energy, Elsevier, vol. 353(PB).
    24. Erdinç, Fatma Gülşen, 2023. "Rolling horizon optimization based real-time energy management of a residential neighborhood considering PV and ESS usage fairness," Applied Energy, Elsevier, vol. 344(C).
    25. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    26. van der Roest, Els & Snip, Laura & Fens, Theo & van Wijk, Ad, 2020. "Introducing Power-to-H3: Combining renewable electricity with heat, water and hydrogen production and storage in a neighbourhood," Applied Energy, Elsevier, vol. 257(C).
    27. He, Yingdong & Zhou, Yuekuan & Wang, Zhe & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2021. "Quantification on fuel cell degradation and techno-economic analysis of a hydrogen-based grid-interactive residential energy sharing network with fuel-cell-powered vehicles," Applied Energy, Elsevier, vol. 303(C).
    28. Lerbinger, Alicia & Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof, 2023. "Optimal decarbonization strategies for existing districts considering energy systems and retrofits," Applied Energy, Elsevier, vol. 352(C).
    29. Francesca Ceglia & Elisa Marrasso & Giovanna Pallotta & Carlo Roselli & Maurizio Sasso, 2022. "The State of the Art of Smart Energy Communities: A Systematic Review of Strengths and Limits," Energies, MDPI, vol. 15(9), pages 1-28, May.
    30. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    31. Horbach, Jens & Rammer, Christian, 2018. "Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms," Energy Policy, Elsevier, vol. 121(C), pages 404-414.
    32. Zhou, Yuekuan & Liu, Xiaohua & Zhao, Qianchuan, 2024. "A stochastic vehicle schedule model for demand response and grid flexibility in a renewable-building-e-transportation-microgrid," Renewable Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qitong Fu & Zuoxia Xing & Chao Zhang & Jian Xu, 2024. "A Review and Prospective Study on Modeling Approaches and Applications of Virtual Energy Storage in Integrated Electric–Thermal Energy Systems," Energies, MDPI, vol. 17(16), pages 1-21, August.
    2. Anna Kozlowska & Francesco Guarino & Rosaria Volpe & Adriano Bisello & Andrea Gabaldòn & Abolfazl Rezaei & Vicky Albert-Seifried & Beril Alpagut & Han Vandevyvere & Francesco Reda & Giovanni Tumminia , 2024. "Positive Energy Districts: Fundamentals, Assessment Methodologies, Modeling and Research Gaps," Energies, MDPI, vol. 17(17), pages 1-31, September.
    3. Massimiliano Ferrara & Fabio Mottola & Daniela Proto & Antonio Ricca & Maria Valenti, 2024. "Local Energy Community to Support Hydrogen Production and Network Flexibility," Energies, MDPI, vol. 17(15), pages 1-20, July.
    4. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2024. "Hot Topics at the 18th SDEWES Conference in 2023: A Conference Report," Energies, MDPI, vol. 17(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Ceglia & Elisa Marrasso & Chiara Martone & Giovanna Pallotta & Carlo Roselli & Maurizio Sasso, 2023. "Towards the Decarbonization of Industrial Districts through Renewable Energy Communities: Techno-Economic Feasibility of an Italian Case Study," Energies, MDPI, vol. 16(6), pages 1-23, March.
    2. Pastore, Lorenzo Mario & Groppi, Daniele & Feijoo, Felipe & Lo Basso, Gianluigi & Astiaso Garcia, Davide & de Santoli, Livio, 2024. "Optimal decarbonisation pathways for the Italian energy system: Modelling a long-term energy transition to achieve zero emission by 2050," Applied Energy, Elsevier, vol. 367(C).
    3. Aunedi, Marko & Yliruka, Maria & Dehghan, Shahab & Pantaleo, Antonio Marco & Shah, Nilay & Strbac, Goran, 2022. "Multi-model assessment of heat decarbonisation options in the UK using electricity and hydrogen," Renewable Energy, Elsevier, vol. 194(C), pages 1261-1276.
    4. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    5. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    6. Francesca Ceglia & Elisa Marrasso & Samiran Samanta & Maurizio Sasso, 2022. "Addressing Energy Poverty in the Energy Community: Assessment of Energy, Environmental, Economic, and Social Benefits for an Italian Residential Case Study," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    7. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    8. Nyangon, Joseph & Darekar, Ayesha, 2024. "Advancements in hydrogen energy systems: A review of levelized costs, financial incentives and technological innovations," Innovation and Green Development, Elsevier, vol. 3(3).
    9. De Masi, Rosa Francesca & Festa, Valentino & Penchini, Daniele & Ruggiero, Silvia & Tariello, Francesco & Vanoli, Giuseppe Peter & Zinno, Alberto, 2024. "State of art of hydrogen utilization for building sector and set-up with preliminary experimental results of 1 kWel solid oxide fuel cell installed in a nearly zero energy house," Energy, Elsevier, vol. 302(C).
    10. Hemmati, Reza & Bornapour, Seyyed Mohammad & Saboori, Hedayat, 2024. "Standalone hybrid power-hydrogen system incorporating daily-seasonal green hydrogen storage and hydrogen refueling station," Energy, Elsevier, vol. 295(C).
    11. Klimenko, V.V. & Krasheninnikov, S.M. & Fedotova, E.V., 2022. "CHP performance under the warming climate: a case study for Russia," Energy, Elsevier, vol. 244(PB).
    12. Li, Ruiqi & Ren, Hongbo & Wu, Qiong & Li, Qifen & Gao, Weijun, 2024. "Cooperative economic dispatch of EV-HV coupled electric-hydrogen integrated energy system considering V2G response and carbon trading," Renewable Energy, Elsevier, vol. 227(C).
    13. Shang, Ce & Ge, Yuyou & Zhai, Suwei & Huo, Chao & Li, Wenyun, 2023. "Combined heat and power storage planning," Energy, Elsevier, vol. 279(C).
    14. Sassenou, L.-N. & Olivieri, L. & Olivieri, F., 2024. "Challenges for positive energy districts deployment: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    15. Juan Gea-Bermúdez & Kaushik Das & Hardi Koduvere & Matti Juhani Koivisto, 2020. "Day-Ahead Market Modelling of Large-Scale Highly-Renewable Multi-Energy Systems: Analysis of the North Sea Region towards 2050," Energies, MDPI, vol. 14(1), pages 1-17, December.
    16. Abdulraheem Salaymeh & Irene Peters & Stefan Holler, 2024. "Factoring Building Refurbishment and Climatic Effect into Heat Demand Assessments and Forecasts: Case Study and Open Datasets for Germany," Energies, MDPI, vol. 17(3), pages 1-20, January.
    17. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Sina Heidari, 2020. "How Strategic Behavior of Natural Gas Exporters Can Affect the Sectors of Electricity, Heating, and Emission Trading during the European Energy Transition," Energies, MDPI, vol. 13(19), pages 1-20, September.
    19. Liu, Xinyao & Bierkens, Floris & De Mel, Ishanki & Leach, Matthew & Short, Michael & Chitnis, Mona & Zheng, Boyue & Liu, Lirong, 2024. "Tackling fuel poverty and decarbonisation in a distributed heating system through a three-layer whole system approach," Applied Energy, Elsevier, vol. 362(C).
    20. Ceglia, Francesca & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio, 2023. "Energy and environmental assessment of a biomass-based renewable energy community including photovoltaic and hydroelectric systems," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924007578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.