IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics0360544223031092.html
   My bibliography  Save this article

Optimisation and analysis of an integrated energy system with hydrogen supply using solar spectral beam splitting pre-processing

Author

Listed:
  • Yang, Xiaohui
  • Huang, Zezhong
  • Xiao, Riying
  • Wu, Chilv
  • Zhang, Zhonglian
  • Mei, Linghao

Abstract

The application of integrated energy systems (IES) in urban areas is gradually increasing, yet the constraint of limited building space poses a significant challenge to effective system planning. In this paper, to address the issue of area limitation from the perspective of improving solar energy utilization. A novel IES utilizing solar spectral beam splitting (SBS) for hydrogen production is proposed, which introduces SBS technology to make full use of the sun’s full-spectrum energy. Furthermore, the incorporation of photocatalytic hydrogen production introduces an innovative approach to meet the hydrogen needs of hydrogen refuelling stations, facilitating highly efficient co-generation of cooling, heating, electricity, and hydrogen supply. To determine the optimal system configuration, a comparison is made with a stand-alone solar system using a honey badger-simulated annealing optimization algorithm. The results show that the SBS-IES achieves a solar energy utilization rate of 37.72% and reduces equipment footprint by 20.48%. Furthermore, a sensitivity analysis is performed to analyse the impact of changes in floor space on the system. This innovative system is suitable for small-scale IES and serves as an efficient solution for urban energy systems.

Suggested Citation

  • Yang, Xiaohui & Huang, Zezhong & Xiao, Riying & Wu, Chilv & Zhang, Zhonglian & Mei, Linghao, 2024. "Optimisation and analysis of an integrated energy system with hydrogen supply using solar spectral beam splitting pre-processing," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223031092
    DOI: 10.1016/j.energy.2023.129715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    2. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    3. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    4. Lorestani, A. & Ardehali, M.M., 2018. "Optimal integration of renewable energy sources for autonomous tri-generation combined cooling, heating and power system based on evolutionary particle swarm optimization algorithm," Energy, Elsevier, vol. 145(C), pages 839-855.
    5. Yang, G. & Zhai, X.Q., 2019. "Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition," Energy, Elsevier, vol. 174(C), pages 647-663.
    6. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    7. Li, Nan & Zhao, Xunwen & Shi, Xunpeng & Pei, Zhenwei & Mu, Hailin & Taghizadeh-Hesary, Farhad, 2021. "Integrated energy systems with CCHP and hydrogen supply: A new outlet for curtailed wind power," Applied Energy, Elsevier, vol. 303(C).
    8. Pang, Yi & Pan, Lei & Zhang, Jingmei & Chen, Jianwei & Dong, Yan & Sun, Hexu, 2022. "Integrated sizing and scheduling of an off-grid integrated energy system for an isolated renewable energy hydrogen refueling station," Applied Energy, Elsevier, vol. 323(C).
    9. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    10. Wang, Gang & Yao, Yubo & Chen, Zeshao & Hu, Peng, 2019. "Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology," Energy, Elsevier, vol. 166(C), pages 256-266.
    11. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    12. Yang, Xiaohui & Liu, Kang & Leng, Zhengyang & Liu, Tao & Zhang, Liufang & Mei, Linghao, 2022. "Multi-dimensions analysis of solar hybrid CCHP systems with redundant design," Energy, Elsevier, vol. 253(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Masi, Rosa Francesca & Festa, Valentino & Penchini, Daniele & Ruggiero, Silvia & Tariello, Francesco & Vanoli, Giuseppe Peter & Zinno, Alberto, 2024. "State of art of hydrogen utilization for building sector and set-up with preliminary experimental results of 1 kWel solid oxide fuel cell installed in a nearly zero energy house," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    2. Junchao Cheng & Yongyi Huang & Hongjing He & Abdul Matin Ibrahimi & Tomonobu Senjyu, 2023. "Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons," Energies, MDPI, vol. 16(10), pages 1-21, May.
    3. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
    4. Kang, Ligai & Wu, Xiaojing & Yuan, Xiaoxue & Ma, Kunru & Wang, Yongzhen & Zhao, Jun & An, Qingsong, 2021. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings," Energy, Elsevier, vol. 233(C).
    5. Chen, Zhang & Yiliang, Xie & Hongxia, Zhang & Yujie, Gu & Xiongwen, Zhang, 2023. "Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system," Energy, Elsevier, vol. 262(PA).
    6. Lingmin, Chen & Jiekang, Wu & Fan, Wu & Huiling, Tang & Changjie, Li & Yan, Xiong, 2020. "Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power," Energy, Elsevier, vol. 211(C).
    7. Song, Zhihui & Liu, Tao & Lin, Qizhao, 2020. "Multi-objective optimization of a solar hybrid CCHP system based on different operation modes," Energy, Elsevier, vol. 206(C).
    8. Zhao, Junjie & Luo, Xiaobing & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel CCHP system based on a closed PEMEC-PEMFC loop with water self-supply," Applied Energy, Elsevier, vol. 338(C).
    9. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    10. Zhang, Han & Han, Zhonghe & Wu, Di & Li, Peng & Li, Peng, 2023. "Energy optimization and performance analysis of a novel integrated energy system coupled with solar thermal unit and preheated organic cycle under extended following electric load strategy," Energy, Elsevier, vol. 272(C).
    11. Li, Nan & Zhao, Xunwen & Shi, Xunpeng & Pei, Zhenwei & Mu, Hailin & Taghizadeh-Hesary, Farhad, 2021. "Integrated energy systems with CCHP and hydrogen supply: A new outlet for curtailed wind power," Applied Energy, Elsevier, vol. 303(C).
    12. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    13. Zhang, Zhonglian & Yang, Xiaohui & Yang, Li & Wang, Zhaojun & Huang, Zezhong & Wang, Xiaopeng & Mei, Linghao, 2023. "Optimal configuration of double carbon energy system considering climate change," Energy, Elsevier, vol. 283(C).
    14. Zhao, Xin & Zheng, Wenyu & Hou, Zhihua & Chen, Heng & Xu, Gang & Liu, Wenyi & Chen, Honggang, 2022. "Economic dispatch of multi-energy system considering seasonal variation based on hybrid operation strategy," Energy, Elsevier, vol. 238(PA).
    15. Wang, Gang & Wang, Fasi & Shen, Fan & Chen, Zeshao & Hu, Peng, 2019. "Novel design and thermodynamic analysis of a solar concentration PV and thermal combined system based on compact linear Fresnel reflector," Energy, Elsevier, vol. 180(C), pages 133-148.
    16. Yuwei, Liu & Li, Lingling & Jiaqi, Liu, 2024. "Hybrid scheduling strategy and improved marine predator optimizer for energy scheduling in integrated energy system to enhance economic and environmental protection capability," Renewable Energy, Elsevier, vol. 228(C).
    17. Ren, Xiaoxiao & Han, Zijun & Ma, Jinpeng & Xue, Kai & Chong, Daotong & Wang, Jinshi & Yan, Junjie, 2024. "Life-cycle-based multi-objective optimal design and analysis of distributed multi-energy systems for data centers," Energy, Elsevier, vol. 288(C).
    18. Wang, Zhaojun & Zhang, Zhonghui & Zhang, Zhonglian & Lei, Dayong & Li, Moxuan & Zhang, Liuyu, 2023. "Two-layer optimization of integrated energy system with considering ambient temperature effect and variable operation scheme," Energy, Elsevier, vol. 278(C).
    19. Deng, Yan & Zeng, Rong & Liu, Yicai, 2022. "A novel off-design model to optimize combined cooling, heating and power system with hybrid chillers for different operation strategies," Energy, Elsevier, vol. 239(PB).
    20. Yunshou Mao & Jiekang Wu & Wenjie Zhang, 2020. "An Effective Operation Strategy for CCHP System Integrated with Photovoltaic/Thermal Panels and Thermal Energy Storage," Energies, MDPI, vol. 13(23), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223031092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.