IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032584.html
   My bibliography  Save this article

Metaheuristic optimizing energy recovery from plastic waste in a gasification-based system for waste conversion and management

Author

Listed:
  • Yan, Caozheng
  • Abed, Azher M.
  • Singh, Pradeep Kumar
  • Li, Xuetao
  • Zhou, Xiao
  • Lei, Guoliang
  • Abdullaev, Sherzod
  • Elmasry, Yasser
  • Mahariq, Ibrahim

Abstract

In an era where sustainable waste management and clean energy production are paramount, this study presents an innovative integration of plastic waste gasification with solid oxide fuel cell (SOFC) technology, optimized through metaheuristic particle swarm optimization (PSO). The research explores the conversion of polypropylene (PP) waste into syngas via gasification, which is then utilized as a fuel for SOFCs to generate electricity. The optimization process focuses on maximizing power and heating outputs while minimizing carbon dioxide emissions. The study's findings demonstrate the potential of integrating gasification and SOFC technologies to create a sustainable energy system that addresses the challenges of plastic waste. Key findings from the metaheuristic PSO multi-objective optimization reveal that optimal power production, approximately 360 kW, is achieved at temperatures exceeding 1140 K, irrespective of the steam/PP waste ratio. Heating production peaks at 1000 kW with temperatures above 1120 K and utilization factors over 0.765, while the minimum heating output is 700 kW. Emission analysis indicates a significant reduction in carbon dioxide emissions with increased temperatures and utilization factors, achieving a minimum of 700 kg/MWh at temperatures above 1120 K. The study's results demonstrate the effectiveness of the PSO optimization in fine-tuning the operational parameters of the integrated system, leading to improved energy efficiency and reduced environmental impact. Power production of 366.37 kW, a significant heating rate of 995.20 g/s, and emissions of 714.06 kg/MWh are the optimum performances. The research provides valuable insights into the potential of plastic waste-to-energy technologies as sustainable solutions for energy production and waste management.

Suggested Citation

  • Yan, Caozheng & Abed, Azher M. & Singh, Pradeep Kumar & Li, Xuetao & Zhou, Xiao & Lei, Guoliang & Abdullaev, Sherzod & Elmasry, Yasser & Mahariq, Ibrahim, 2024. "Metaheuristic optimizing energy recovery from plastic waste in a gasification-based system for waste conversion and management," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032584
    DOI: 10.1016/j.energy.2024.133482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.