IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222003693.html
   My bibliography  Save this article

Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings

Author

Listed:
  • Chadly, Assia
  • Azar, Elie
  • Maalouf, Maher
  • Mayyas, Ahmad

Abstract

Green and energy-efficient buildings have gained wider acceptance in the last few years due to their ability to save energy and, in certain cases, the ability to generate electricity using rooftop photovoltaic solar cells or other renewable energy sources. One of the major challenges for these buildings is having economic energy storage systems (ESS) that can reduce the effect of electricity curtailment. This paper proposes a techno-economic model that evaluates and compares three ESS technologies linked to a stand-alone photovoltaic system, namely lithium-ion (Li-ion) batteries (LIB), proton-exchange membranes reversible fuel cells (PEM RFC), and reversible solid oxide cells (RSOC). The model accounts for the degradation of the considered systems while evaluating their economics using the Levelized Cost of Energy Storage (LCOS) metric. The capabilities of the model are illustrated using a case study of a typical commercial building located in Los Angeles, California. The resulting LCOS levels without considering degradation are 41.73 ¢/kWh for PEM RFC, 28.18¢/kWh for RSOC, and 25.85¢/kWh for LIB. On the other hand, while considering the degradation the resulting LCOS at the end of the first year are 41.79 ¢/kWh for PEM RFC, 28.29¢/kWh for RSOC, and 27.35¢/kWh for LIB. Sensitivity analyses show that the LCOS of three considered ESS is sensitive to changes in capital costs, lifetime, discount rate, and round-trip efficiency. Moreover, the changes along the polarization curve show the most efficient configuration (highest efficiency and lowest LCOS) for PEM RFC. The study shows how Li-ion batteries and fuel cells are economically attractive and help improve the reliability and resiliency of power grids in the long term although they are prone to degradation.

Suggested Citation

  • Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003693
    DOI: 10.1016/j.energy.2022.123466
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mateusz Andrychowicz, 2020. "Comparison of the Use of Energy Storages and Energy Curtailment as an Addition to the Allocation of Renewable Energy in the Distribution System in Order to Minimize Development Costs," Energies, MDPI, vol. 13(14), pages 1-20, July.
    2. Jerzy Mikulik, 2018. "Energy Demand Patterns in an Office Building: A Case Study in Kraków (Southern Poland)," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    3. Al-Khori, Khalid & Bicer, Yusuf & Koç, Muammer, 2021. "Comparative techno-economic assessment of integrated PV-SOFC and PV-Battery hybrid system for natural gas processing plants," Energy, Elsevier, vol. 222(C).
    4. Lin, Qian & Wang, Jun & Xiong, Rui & Shen, Weixiang & He, Hongwen, 2019. "Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries," Energy, Elsevier, vol. 183(C), pages 220-234.
    5. Li, Qing & Zhang, Lianying & Zhang, Limao & Wu, Xianguo, 2021. "Optimizing energy efficiency and thermal comfort in building green retrofit," Energy, Elsevier, vol. 237(C).
    6. Guney, Mukrimin Sevket & Tepe, Yalcin, 2017. "Classification and assessment of energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1187-1197.
    7. Mayyas, Ahmad & Chadly, Assia & Amer, Saed Talib & Azar, Elie, 2022. "Economics of the Li-ion batteries and reversible fuel cells as energy storage systems when coupled with dynamic electricity pricing schemes," Energy, Elsevier, vol. 239(PA).
    8. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Falama, Ruben Zieba & Saidi, Abdelaziz Salah & Soulouknga, Marcel Hamda & Salah, Chokri Ben, 2023. "A techno-economic comparative study of renewable energy systems based different storage devices," Energy, Elsevier, vol. 266(C).
    2. Dewi, Retno Gumilang & Siagian, Ucok Welo Risma & Asmara, Briantama & Anggraini, Syahrina Dyah & Ichihara, Jun & Kobashi, Takuro, 2023. "Equitable, affordable, and deep decarbonization pathways for low-latitude developing cities by rooftop photovoltaics integrated with electric vehicles," Applied Energy, Elsevier, vol. 332(C).
    3. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    4. Yingyue Li & Hongjun Li & Rui Miao & He Qi & Yi Zhang, 2023. "Energy–Environment–Economy (3E) Analysis of the Performance of Introducing Photovoltaic and Energy Storage Systems into Residential Buildings: A Case Study in Shenzhen, China," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    5. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).
    6. Julian David Hunt & Behnam Zakeri & Andreas Nascimento & Diego Augusto de Jesus Pacheco & Epari Ritesh Patro & Bojan Đurin & Márcio Giannini Pereira & Walter Leal Filho & Yoshihide Wada, 2023. "Isothermal Deep Ocean Compressed Air Energy Storage: An Affordable Solution for Seasonal Energy Storage," Energies, MDPI, vol. 16(7), pages 1-18, March.
    7. Corneliu Marinescu, 2022. "Progress in the Development and Implementation of Residential EV Charging Stations Based on Renewable Energy Sources," Energies, MDPI, vol. 16(1), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reveles-Miranda, María & Ramirez-Rivera, Victor & Pacheco-Catalán, Daniella, 2024. "Hybrid energy storage: Features, applications, and ancillary benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "Dynamic Simulation and Thermoeconomic Analysis of a Hybrid Renewable System Based on PV and Fuel Cell Coupled with Hydrogen Storage," Energies, MDPI, vol. 14(22), pages 1-20, November.
    3. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    4. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2022. "Dynamic simulation modelling of reversible solid oxide fuel cells for energy storage purpose," Energy, Elsevier, vol. 260(C).
    5. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    6. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    7. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    9. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    10. Konstantinos Sofias & Zoe Kanetaki & Constantinos Stergiou & Sébastien Jacques, 2023. "Combining CAD Modeling and Simulation of Energy Performance Data for the Retrofit of Public Buildings," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    11. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Diego Rodríguez Rodríguez, 2019. "Los costes de la transición: las centrales de bombeo y el gas en sistemas aislados," Studies on the Spanish Economy eee2019-13, FEDEA.
    13. Jefimowski, Włodzimierz & Szeląg, Adam & Steczek, Marcin & Nikitenko, Anatolii, 2020. "Vanadium redox flow battery parameters optimization in a transportation microgrid: A case study," Energy, Elsevier, vol. 195(C).
    14. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    15. Xiao, Gang & Sun, Anwei & Liu, Hongwei & Ni, Meng & Xu, Haoran, 2023. "Thermal management of reversible solid oxide cells in the dynamic mode switching," Applied Energy, Elsevier, vol. 331(C).
    16. K. Habibul Kabir & Shafquat Yasar Aurko & Md. Saifur Rahman, 2021. "Smart Power Management in OIC Countries: A Critical Overview Using SWOT-AHP and Hybrid MCDM Analysis," Energies, MDPI, vol. 14(20), pages 1-50, October.
    17. Vasileios Papadopoulos & Jos Knockaert & Chris Develder & Jan Desmet, 2020. "Peak Shaving through Battery Storage for Low-Voltage Enterprises with Peak Demand Pricing," Energies, MDPI, vol. 13(5), pages 1-17, March.
    18. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    19. Eroğlu, Fatih & Kurtoğlu, Mehmet & Eren, Ahmet & Vural, Ahmet Mete, 2023. "Multi-objective control strategy for multilevel converter based battery D-STATCOM with power quality improvement," Applied Energy, Elsevier, vol. 341(C).
    20. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.