IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222018734.html
   My bibliography  Save this article

Multi-criteria assessment of solid oxide fuel cell–combined cooling, heating, and power system model for residential application

Author

Listed:
  • Xu, Yuhao
  • Luo, Xiaobing
  • Tu, Zhengkai
  • Siew Hwa Chan,

Abstract

This paper presents the performance and multi-criteria assessment of a combined cooling, heating, and power (CCHP) system applied to a residence under electric-following and thermal-following strategies. The CCHP system mainly consists of solid oxide fuel cell (SOFC), LiBr absorption chiller, and water tank or lithium battery to simultaneously provide electric power, cooling power, thermal power, and domestic hot water for the household. The output power, system efficiency, exergy analysis, economic analysis, annual greenhouse gas (GHG) reduction, and thermoelectric ratio of the CCHP system under the two control strategies above are investigated. The results show that the SOFC–CCHP system with the hot water tank controlled by the electric-following strategy in summer and winter improves system and exergy efficiencies as well as reduces daily cost and annual GHG reduction with decreased economic performance. System efficiency is between 67.1% and 96.8%, exergy efficiency stabilizes at approximately 42%, the annual GHG reduction is between 1.356 t and 4.71 t, the daily cost is 9 $ and the thermoelectric ratio is between 0.132 and 1.819 in summer. System efficiency is between 86.5% and 88%, exergy efficiency stabilizes at approximately 43%, the annual GHG reduction is between 0.886 t and 7.742 t, the daily cost is 7.31 $ and the thermoelectric ratio is between 0.091 and 1.62 in winter.

Suggested Citation

  • Xu, Yuhao & Luo, Xiaobing & Tu, Zhengkai & Siew Hwa Chan,, 2022. "Multi-criteria assessment of solid oxide fuel cell–combined cooling, heating, and power system model for residential application," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018734
    DOI: 10.1016/j.energy.2022.124974
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222018734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
    2. Guo, Xinru & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Yuan, Jinliang & Hou, Shujin, 2020. "A new hybrid system composed of high-temperature proton exchange fuel cell and two-stage thermoelectric generator with Thomson effect: Energy and exergy analyses," Energy, Elsevier, vol. 195(C).
    3. Fathy, Ahmed & Rezk, Hegazy, 2022. "Political optimizer based approach for estimating SOFC optimal parameters for static and dynamic models," Energy, Elsevier, vol. 238(PC).
    4. Al-Khori, Khalid & Bicer, Yusuf & Koç, Muammer, 2021. "Comparative techno-economic assessment of integrated PV-SOFC and PV-Battery hybrid system for natural gas processing plants," Energy, Elsevier, vol. 222(C).
    5. Wang, Xusheng & Lv, Xiaojing & Weng, Yiwu, 2020. "Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops," Energy, Elsevier, vol. 197(C).
    6. Fong, K.F. & Lee, C.K., 2014. "Investigation on zero grid-electricity design strategies of solid oxide fuel cell trigeneration system for high-rise building in hot and humid climate," Applied Energy, Elsevier, vol. 114(C), pages 426-433.
    7. Alirahmi, Seyed Mojtaba & Mousavi, Seyedeh Fateme & Ahmadi, Pouria & Arabkoohsar, Ahmad, 2021. "Soft computing analysis of a compressed air energy storage and SOFC system via different artificial neural network architecture and tri-objective grey wolf optimization," Energy, Elsevier, vol. 236(C).
    8. You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
    9. Wang, Jian & Xu, Yi-Peng & She, Chen & Xu, Ping & Bagal, Hamid Asadi, 2022. "Optimal parameter identification of SOFC model using modified gray wolf optimization algorithm," Energy, Elsevier, vol. 240(C).
    10. Moradi, Mehrdad & Mehrpooya, Mehdi, 2017. "Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower," Energy, Elsevier, vol. 130(C), pages 530-543.
    11. Aghaei, Ali Tavakkol & Saray, Rahim Khoshbakhti, 2021. "Optimization of a combined cooling, heating, and power (CCHP) system with a gas turbine prime mover: A case study in the dairy industry," Energy, Elsevier, vol. 229(C).
    12. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2015. "Techno-economic and policy requirements for the market-entry of the fuel cell micro-CHP system in the residential sector," Applied Energy, Elsevier, vol. 143(C), pages 370-382.
    13. Wang, Heng & Zhao, Hongbin & Du, Huicheng & Zhao, Zefeng & Zhang, Taiheng, 2022. "Thermodynamic performance study of a new diesel-fueled CLHG/SOFC/STIG cogeneration system with CO2 recovery," Energy, Elsevier, vol. 246(C).
    14. Malfuzi, A. & Mehr, A.S. & Rosen, Marc A. & Alharthi, M. & Kurilova, A.A., 2020. "Economic viability of bitcoin mining using a renewable-based SOFC power system to supply the electrical power demand," Energy, Elsevier, vol. 203(C).
    15. Wang, Xusheng & Lv, Xiaojing & Mi, Xicong & Spataru, Catalina & Weng, Yiwu, 2022. "Coordinated control approach for load following operation of SOFC-GT hybrid system," Energy, Elsevier, vol. 248(C).
    16. Jing, Rui & Wang, Meng & Brandon, Nigel & Zhao, Yingru, 2017. "Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China," Energy, Elsevier, vol. 141(C), pages 273-289.
    17. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    18. Wang, Chao & Liao, Mingzheng & Jiang, Zhiqiang & Liang, Bo & Weng, Jiahong & Song, Qingbin & Zhao, Ming & Chen, Ying & Lei, Libin, 2022. "Sorption-enhanced propane partial oxidation hydrogen production for solid oxide fuel cell (SOFC) applications," Energy, Elsevier, vol. 247(C).
    19. Vincenzo Liso & Yingru Zhao & Wenyuan Yang & Mads Pagh Nielsen, 2015. "Modelling of a Solid Oxide Fuel Cell CHP System Coupled with a Hot Water Storage Tank for a Single Household," Energies, MDPI, vol. 8(3), pages 1-19, March.
    20. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    21. Mehr, A.S. & Lanzini, A. & Santarelli, M. & Rosen, Marc A., 2021. "Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches," Energy, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Quanrong & Tian, Chunyu & Hun, Lianming & Wang, Xin & Li, Zhiyi & Liu, Zhijun & Wei, Wei, 2024. "Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization," Energy, Elsevier, vol. 289(C).
    2. Li, Haolong & Wei, Wei & Liu, Fengxia & Xu, Xiaofei & Li, Zhiyi & Liu, Zhijun, 2023. "Identification of internal polarization dynamics for solid oxide fuel cells investigated by electrochemical impedance spectroscopy and distribution of relaxation times," Energy, Elsevier, vol. 267(C).
    3. De Masi, Rosa Francesca & Festa, Valentino & Penchini, Daniele & Ruggiero, Silvia & Tariello, Francesco & Vanoli, Giuseppe Peter & Zinno, Alberto, 2024. "State of art of hydrogen utilization for building sector and set-up with preliminary experimental results of 1 kWel solid oxide fuel cell installed in a nearly zero energy house," Energy, Elsevier, vol. 302(C).
    4. Zeng, Rong & Gan, Jijuan & Guo, Baoxin & Zhang, Xiaofeng & Li, Hongqiang & Yin, Wei & Zhang, Guoqiang, 2023. "Thermodynamic performance analysis of solid oxide fuel cell - combined cooling, heating and power system with integrated supercritical CO2 power cycle - organic Rankine cycle and absorption refrigerat," Energy, Elsevier, vol. 283(C).
    5. Ramadhani, Farah & Hussain, M.A. & Mokhlis, Hazlie & Fazly, Muhamad & Ali, Jarinah Mohd., 2019. "Evaluation of solid oxide fuel cell based polygeneration system in residential areas integrating with electric charging and hydrogen fueling stations for vehicles," Applied Energy, Elsevier, vol. 238(C), pages 1373-1388.
    6. Liu, Lijun & Qian, Jin & Hua, Li & Zhang, Bin, 2022. "System estimation of the SOFCs using fractional-order social network search algorithm," Energy, Elsevier, vol. 255(C).
    7. Wu, Yunyun & Lou, Jiahui & Wang, Yihan & Tian, Zhenyu & Yang, Lingzhi & Hao, Yong & Liu, Guohua & Chen, Heng, 2024. "Performance evaluation of a novel photovoltaic-thermochemical and solid oxide fuel cell-based distributed energy system with CO2 capture," Applied Energy, Elsevier, vol. 364(C).
    8. Wang, Yongzhen & Zhang, Lanlan & Song, Yi & Han, Kai & Zhang, Yan & Zhu, Yilin & Kang, Ligai, 2024. "State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Dadak, Ali & Mousavi, Seyed Ali & Mehrpooya, Mehdi & Kasaeian, Alibakhsh, 2022. "Techno-economic investigation and dual-objective optimization of a stand-alone combined configuration for the generation and storage of electricity and hydrogen applying hybrid renewable system," Renewable Energy, Elsevier, vol. 201(P1), pages 1-20.
    10. Tan, Luzhi & Chen, Changnian & Gong, Zhiqiang & Xia, Lijiang, 2023. "Performance evaluation on a novel combined cool/heat and power (CCP/CHP) system integrating an SOFC-GT plant with a solar-assisted LiBr absorption cooling/heating unit," Energy, Elsevier, vol. 283(C).
    11. Wang, Qiushi & Duan, Liqiang & Zheng, Nan & Lu, Ziyi, 2023. "4E Analysis of a novel combined cooling, heating and power system coupled with solar thermochemical process and energy storage," Energy, Elsevier, vol. 275(C).
    12. Wang, Xusheng & Lv, Xiaojing & Mi, Xicong & Spataru, Catalina & Weng, Yiwu, 2022. "Coordinated control approach for load following operation of SOFC-GT hybrid system," Energy, Elsevier, vol. 248(C).
    13. Fathy, Ahmed & Rezk, Hegazy, 2022. "Political optimizer based approach for estimating SOFC optimal parameters for static and dynamic models," Energy, Elsevier, vol. 238(PC).
    14. Chen, Siyu & Xue, Yejian & Li, Jianming & Zhang, Houcheng & Zhou, Lihua & Li, Yangyang, 2023. "Efficient and geometry-matching two-stage annular thermoelectric generator for tubular solid oxide fuel cell waste heat recovery," Energy, Elsevier, vol. 285(C).
    15. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2022. "Dynamic simulation modelling of reversible solid oxide fuel cells for energy storage purpose," Energy, Elsevier, vol. 260(C).
    16. Al-Khori, Khalid & Bicer, Yusuf & Koç, Muammer, 2021. "Comparative techno-economic assessment of integrated PV-SOFC and PV-Battery hybrid system for natural gas processing plants," Energy, Elsevier, vol. 222(C).
    17. Wang, Yuqing & Zeng, Hongyu & Cao, Tianyu & Shi, Yixiang & Cai, Ningsheng & Ye, Xiaofeng & Wang, Shaorong, 2016. "Start-up and operation characteristics of a flame fuel cell unit," Applied Energy, Elsevier, vol. 178(C), pages 415-421.
    18. Alirahmi, Seyed Mojtaba & Behzadi, Amirmohammad & Ahmadi, Pouria & Sadrizadeh, Sasan, 2023. "An innovative four-objective dragonfly-inspired optimization algorithm for an efficient, green, and cost-effective waste heat recovery from SOFC," Energy, Elsevier, vol. 263(PA).
    19. Wang, Jian & Xu, Yi-Peng & She, Chen & Xu, Ping & Bagal, Hamid Asadi, 2022. "Optimal parameter identification of SOFC model using modified gray wolf optimization algorithm," Energy, Elsevier, vol. 240(C).
    20. Lucarelli, Giuseppe & Genovese, Matteo & Florio, Gaetano & Fragiacomo, Petronilla, 2023. "3E (energy, economic, environmental) multi-objective optimization of CCHP industrial plant: Investigation of the optimal technology and the optimal operating strategy," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.